FORCING WITH OVERLAPPING SUPERCOMPACT
EXTENDERS

SITTINON JIRATTIKANSAKUL

ABSTRACT. We build a supercompact version of the forcing defined in [I]. For
each singular cardinal in the ground model with any fixed cofinality, which
is a limit of supercompact cardinals, it is possible to force so that the size
of the powerset of the singular cardinal is arbitrarily large, while preserving
the singular cardinal. An important feature of this forcing which is different
from the forcing in [I] is that it is possible to define the forcing so that the
successor of the singular cardinal is collapsed, but all the cardinals above it
are preserved.

1. INTRODUCTION

The Singular Cardinal Hypothesis (SCH) states that if x is a singular cardinal,
then 2% has the smallest possible value under all cardinal arithmetic provable in
ZFC. In particular, if  is singular strong limit, then 2¢ = k™. Gitik [I] built a
forcing from overlapping extenders witnessing strongness in which SCH fails for a
singular cardinal of arbitrary fixed cofinality, assuming that the singular cardinal is
singular in the ground model. Let x be such a cardinal and A > k be regular. It is
possible to blow up the value of 2* to be A. The large cardinal assumption used to
build the forcing in [I] is the existence of an increasing sequence of strong cardinals
(ko : @ < cf(k)) whose supremum is k, where each cardinal k, carries an extender
witnessing some strongness of kq, and for each a < 8, E, € Ult(V, Eg). With
some interleaved supercompact cardinals, the forcing also gives some interesting
combinatorial results on successors of singular cardinals, e.g. a stationary reflection
principle and a failure of the approachability property (see [2], [3]).

In this paper, we build a forcing which is a supercompact version of [I]. We
prepare an increasing sequence of supercompact cardinals (k, : @ < n) such that if
A > Sup, ., Ko s regular, each k, carries a long extender £, witnessing ko being A-
supercompact, and j,, : V — Ult(V, E,) is such that j,(A) > ATT (we can prepare
the value j, () to be arbitrarily high), then we define a AT*-c.c. forcing such that
in an extension, 25"P« e > sup_ |j,(A)| and sup, K, is preserved. Below sup, Kq,
most of the cardinals will be preserved. The only cardinals which are collapsed in
the extension belong to one of the intervals of the form (sup, g £, /\g) with 8 <n
limit, for some Ag < kg (the value Ag will be determined from the generic object),
or the interval (sup, <, Ko, AT).

We make some notations for our convenience. For a sequence & = (x, : a < 1),
let Z1B8=(xq:a<pB)and T\ S = (xo:a > ). If X is a set of sequences, let
X | B={Z]pF:7%€ X} Define X\ g is a corresponding fashion For functions
f,g and h, define f o g o h as a function with domain {x € dom(h) : h(x) €
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dom(g) and g(h(z)) € dom(f)}, and for z € dom(fogoh), fogoh = f(g(h(z))). If
X is a set of functions and g and h are functions, define goXoh as {gofoh: f € X}.
If fis a function and d is a set, define f [ d as f | d N dom(f). If X is a set of
functions and d is a set, define X [d={f [d: f € X}. If f and g are functions
and dom(g) C dom(f), define f @ g, f overwritten by g, as a function h with
dom(h) = dom(f), h(z) = g(x) if © € dom(g), otherwise g(x) = f(x). We point
out the locations where we give non-standard notations which we use throughout
the paper in order to facilitate the readers: the paragraph after Definition and
the last paragraph in Section [3| We also recall some important values timely. The
organization of this paper is as follows, where we note that from Section [3|- [10| we
assume GCH.

e In Section [2] we make an analysis of a characterization of extenders which
capture supercompactness. In particular, if GCH holds and j : V — M
witnesses £ being A-supercompact, then the (x,j(\))-extender E derived
from j captures A-supercompactness, and jg(A) = j(A). Then the sequence
of extenders which are Mitchell increasing is derived.

e In Section [3] we analyze the sequence of extenders which are built from
Proposition[2.14] We define domains and objects which were first introduced
by Gitik and Merimovich [4]. Those concepts are important features in our
forcing.

e In each of Section [} [} 6 and [7, we define forcings from sequences of ex-
tenders whose sequences are of different lengths. This is due to the fact
that the proofs of the Prikry property and the strong Prikry property of
a forcing rely on inductions on the lengths of the sequences of extenders.
In particular, to prove that the properties hold for a forcing defined from
a sequence of exntenders whose sequence has a certain length, the Prikry
property and the strong Prikry property of the forcings defined from se-
quences of extenders of shorter lengths are required. We prove the Prikry
property in Section and [6] and the sketch of the proof of the strong
Prikry property is provided in[6]only. The forcing in Section[7]has the most
general form.

e In Section [§| we determine the cardinals which are preserved and collapsed.

e In Section [9] we show that our forcing breaks the Singular Cardinal Hy-
pothesis on the singular cardinals which are suprema of the supercompact
cardinals.

e In Section [L0] we make some analysis of the scales which are derived natu-
rally from our forcing.

We finally draw a conclusion in Section We assume that the readers are
familiar with forcings and extenders.

2. SUPERCOMPACT EXTENDERS

In this section we determine the lengths of an extender which captures super-
compactness of an embedding. For the detailed account on extenders, see Chapter
26 of [5].

Definition 2.1. Let x < A be cardinals. k is <A-supercompact if there is an
elementary embedding j : V — M such that crit(j) = &, j(k) > A, and <*M C M.
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Some set theorists define k to be <A-supercompact as k being y-supercompact
for v < A. This is strictly weaker than what we define in Definition Others
may allow the value j(x) in Definition to be at least A, although such x in the
definition with j(k) = A characterizes almost hugeness of k.

We will make an analysis of the extender derived from an elementary embedding
j witnessing some supercompactness. In the end, we only consider the situation
when & is A-supercompact, but it is worth analysing the case k is < A-supercompact.
Thus, we will make an analysis for both cases.

Let j : V — M be an embedding witnessing x being <A-supercompact. Fix
¢ > A. We give an overview of the structure of the (k,&)-extender E derived from
j. For each a € [(]<¥, let A, be the least ordinal such that max(a) < j(A,). Define

AeE,ifacjA).
E, is a k-complete ultrafilter on [\,]l%l (note that Ey,y is normal). Let j, : V —
M, = Ult(V, E,). The map kq([f]g,) = j(f)(a) is an elementary embedding from
M, to M.

If a C b€ [£]<*, we enumerate b in increasing order as ap < -+ < ap|—_1.
Assume the increasing enumeration of a is anp, < apn, --- < Qg _y- There is a

natural projection map 7, 4 : [Ap]/?l — [Ao]1?! defined by
Tb,a({B0s B1s -+ s Bpj=1}) = {Bnos By - -+ Bnya_, } Where Bo < f1 < -++ < Bjq|-1-
This induces an elementary embedding %, : M, — M; by the map
[fle, = [f o 7balE,-
The family
(Mayiap :a Cbe []<¥)
forms a directed system. Let Mpg be its direct limit. We can form, for all
a € [£]<¥, elementary embeddings
Ja, g : Mg — Mg
and
jg:V = Mg
such that
JE = Ja,E © Jo for all a.
Note that Mp is isomorphic to an elementary submodel of M with the factor
map k : Mg — M defined as follows: For x € Mg, v = jq g([f]g,) for some a,
define k(z) = j(f)(a). Hence, M is well-founded, we identify Mg as its transitive

collapse, and assume that k is the inverse of the transitive collapse from rge(k) onto
Mpg.

M,
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We prove a series of basic properties regarding the map jg.

Proposition 2.2. crit(k) > £ If &€ = j(8) for some B, then crit(k) > &. In
particular, if £ > X, then jp(k) > .

Proof. For v < &, v = j(id)(y) € rge(k), so v € rge(k). Since k is the inverse of the
transitive collapse, §¢ C Mg and k [ £ = id. Suppose £ = j(B) and jr(8) < j(B).
Then jg(8) = kojr(B8) = j(B), a contradiction. Hence jg(8) = j(8), so j(8) € Mg

and k(j(5)) = j(B)- -

The following proposition is not used in this paper, but is worth being mentioned.

Proposition 2.3. If there is a function s : k — Kk such that j(s)(k) = A, then
crit(k) > A.

Proof. Since £ > A, crit(k) > X\. If A = j(s)(k) = k(jr(s)(k)), A € rge(k), and so
crit(k) > A.
(I

Proposition 2.4. Mg = {jg(f)(a) : a € [£]<¥ and f: [N\o]*) = V} and k(je(f)(a)) =
i(f)(a).

Proof. For a € [£]<%, k(a) = a, so k~2(j(f)(a)) = je(f)(a). -

To determine if Mg is closed under <A-sequences, it is enough to determine if
rge(k) is closed under <A-sequences.

Proposition 2.5. Assume £ > sup j[A]. The following are equivalent:
(1) <*rge(k) C rge(k).
(2) <M Crge(k) and for v < X, j[y] € rge(k).

Proof. The forward direction is trivial. We prove the backward direction. By some

simplification, assume that elements in <*rge(k) are of the form & = (j(fa)(Va) :
a < ), where 7, < £ and v < \. Letf: (fa:a<yyeVand 7= (y4:a<7).
Then the map a — the a-th element of j( ﬂ( jlv]) represents x. By our assumption,
Z € rge(k).

O

Similar proof shows that

Proposition 2.6. Assume A = p* for some cardinal p and £ > supjlp]. The
following are equivalent:

e Prge(k) Crge(k).
o 7[€] C rge(k) and jlo] € rge(k).

Proof. Similar to the proof of Proposition [2.5
O

Remark 2.7. In Proposition (Proposition , it might be possible that in
some circumstances, e.g. j(A) (j(p)) is very high, there is £ < j[A] (£ < j[p]) which
captures <A-supercompactness (p-supercompactness).

Lemma 2.8. Assume GCH.
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There is a sequence I' = (xzo : « € ON) of elements [ON]<* such that if v
is a cardinal, cf(y) > K, then T | v D [y]<".
Let s : k — k. There is a sequence I’ = (x4 : o« € ON) of [ON]|<" such that
ify > k is a cardinal, and o is such that cf(y) > s(a), then T | v D [y]<5(@).
Let j: V — M witness k being <A-supercompact. Then
e if £ is a cardinal in M, & > supj[A], and CfM(f) > j(k), then the
(k,&)-extender E derived from j preserves <A-supercompactness of k.
e if there is a function s : k — K such that j(s)(k) = X, then for an
ordinal & which is a cardinal in M, ¢ > supj[\], and cfM(€) > N, the
(k,&)-extender E derived from j preserves the <\-supercompactness of
K.

(1) We proceed by induction that for each cardinal v with cf(y) > &,
the length of the sequence being built so far will have total length ~v. We
abusively write I' | v for the sequence of length v we have built so far.
The first cardinal is k. By GCH, |<"| = &, so that building a sequence
containing [k]<" of length & is trivial. Suppose v is a cardinal, cf(y) > &
and the T' | 4/ is built for v/ < v. If v = (/) ", then the sequence had been
built so far has length v/. Since |y \ 7| =7 and |y<*| = v, we can list the
sequence so that T' | [y/,7) D [y]<". If 7y is a limit cardinal and cf(y) > &,
then [v]<" = Uy < [7/]", so the sequence that has been built so far takes
care of the cardinal v already. Hence, the proof is done.

A similar argument as in works.
Assume j : V — M witnesses k being <A-supercompact.

e Let I' be as in (1)). Let #:= j(T) | & Then & D ([¢]<V)M D [¢]<A.
We see that for x € [¢(]<}, we have that # = #(v) for some v < &.
Since £ > sup j[\], we can also consider the case where z is jla] for
any « < A as well, so the proof is done.

e Let T be as in (2). Note that in this case, cf™ (£) > j(s)(k) = A, so
J(T) T €2 (MM = [¢]<*. The rest of the proof is the same as in
the previous bullet.

(I

The following lemma can be proved in a similar fashion.

(1)
(2)

Lemma 2.9. Assume GCH.
Let s : k — k. There is a sequence T' = (x4 : « € ON) of [ON]* such that
if ¥ > k is a cardinal, and « is such that cf(y) > s(a), then T | v D [y]5().
Let j: V — M witness k being p-supercompact. Then
o if £ is a cardinal in M, &€ > supjlp], and cf(€) > j(k), then the
(k,&)-extender E derived from j preserves p-supercompactness of k.
e if there is a function s : k — Kk such that j(s)(k) = p, then for an
ordinal & which is a cardinal in M and cfM (&) > p, the (k, €)-extender
E derived from j preserves p-supercompactness of k.

Remark 2.10. The GCH assumption in Lemma and can be weakened.
The cardinal arithmetic requirement for £ to capture supercompactness depends on
the value €.

Remark 2.11. e If j witnesses x being p-supercompact (equivalently <p™-

supercompact), then definability of p is equivalent to definability of p™.
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More specifically, if j(s)(x) = p*, then there is a function ¢ such that
t(a) = s(a)™ on a measure-one set, and hence j(t)(k) = p.

e For a <A-supercompact embedding j : V — M, a few instances of £ where
the (k,¢)-extender derived from j preserves the <A-supercompactness are
((sup(F[IA\])T)M, j(\), and if there is a function s : K — & such that
j(s)(k) = A, then & = sup(j[A]) also gives an instance of an extender
witnessing < A-supercompactness.

e For a p-supercompact embedding j : V — M with A = p™, some values &
where the (k, £)-extender E derived from j preserves the p-supercompactness

are ((sup(j[p))*)™ and j(p)-

Note that if a we derive a (k, j(A\))-extender F from j, then jg(A) = j(A). In the
future, when we introduce an extender F, we may say that F is a (k, jg(\))-extender
without referring j. Observe that among elementary maps j : V — M witnessing
<A-supercompactness, the lowest possible cardinal of j(\) computed in V is A.
Similarly, among elementary maps j : V — M witnessing p-supercompactness, the
lowest possible cardinal of j(p) in V is p™. We end this section by giving a definition
of an extender in our context.

Definition 2.12. E is a (k, §)-extender if E is a (k, §)-extender derived from some
elementary embedding j.

For z € V, denote jg(z) by 2/F (for instance, j(k), j()\) are denoted by k7, \&
respectively). Fix a sequence (E,, : o < 1)) such that for a < 1, E, is an (kq, Ma )-
extender. For a < 7, define k!, = k,7%a, A, = MFa (so that E, is an (kq, M, )-
extender). For o € (0,n] define ko = sups_, kg, K, = supg,, Iﬂ%, and N, =
SUPg<q )\{3. Let 5\% = \. Note that &, &7, and ), are defined without mentioning

Ka, K, and M, respectively.

Definition 2.13. A sequence of extenders (E, : a < n) is Mitchell increasing if
for 8 < a, Eg € Ult(V, E,). The last equation is denoted by Eg < E,.

Proposition 2.14. Assume GCH. Let n > 0 be an ordinal and {kq : e < 1) be an
increasing sequence of supercompact cardinals, and ko > 1. Let A > sup, ., ko and
for ao < m, AN = \. Then there is a sequence (E, : a < 1) such that

(1) E, is an (kq, N,)-extender witnessing ko, being A-supercompact.

(2) for B < a < m, there are functions sS4 : Ko — Ko, to @ Ko — Ko ,
and b2 : ko — Vi such that jg.(sa)(ka) = N, je, (t2)(ke) = )\%, and
je., (h3) (ko) = Eg. In particular, Eg < E, and there is uf : ko — Ko for
B < a such that jg, (u)(Ka) = 5\%.

(3) M|V is regular.

Furthermore, if v is an ordinal, then we prepare Eq so that jg, (ko) > 7.

Proof. By a Laver’s diamond function for kg, let sg : kg = kg and jg : V — My
be such that jo witnesses ko being A-supercompact, and jo(so)(ko) = A. We may
assume that jo is a map derived from a supercompact measure Py, (71), so jo(ko) >
~v and | M|V is regular. Derive a (o, jo(\))-extender Ey. If ko : Ult(V, Eg) — My
is the factor map, then crit(ko) > jo(\). Hence, 3 = jo(ko) > 7, N = jo()) has
a regular size in V' and jg,(so)(ko) = A. By Lemma JjE, Witnesses ko being
A-supercompact.
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Assume a > 0 and (Ej3 : 8 < «), sg, tg/7 and hg/ are built. By a Laver’s diamond
function for ko, let sq : Ko, t5 : Ko, and hf : ko = Vi, and jo : V — M be such
that j, witnesses r, being (M,)T-supercompact, jo(5q)(ka) = A, jo(t3)(ke) = s,
and jo(h2)(ka) = Es. Then derive a (kq, M, )-extender E,. Assume that j, is
from a supercompact measure so that |\, |V is regular. It is easy to check that E,

is as required. Hence, the proof is done.
|

Remark 2.15. In Proposition the cardinal arithmetic assumption can be
weakened to: for a < n, A" = \.

3. AN ANALYSIS ON A COHERENT SEQUENCE OF EXTENDERS

From now on, we always assume GCH. Let (ko : a0 < ), A\, (Eq : @ < 1), (So -
a<)td B<a<ny, (b :B<a<mn and (Ul : B < a <n) beasin
Proposition where ) is regular. Let &g = 7. We also assume that s, 3, u?
are strictly increasing, and their ranges are subsets of (R, kq ). Note that 5\,38 =
)‘gw we may assume that u2+1 = ¢2. If « is limit, and 3 < «, then )\g < M, so we
may assume that t2 () < u2(y) for all 4. In general, if f, g : ko — Ka, f represent
an ordinal lower than the ordinal represented by ¢ in M, = Ult(V, E,), we will
assume that f(y) < g(v) for all v. Define E, (ko) as follows: For A C kg, let
A € Ey (ko) iff 6 € jg,(A). Then E, (k) is just a normal measure on K, which
is isomorphic to Ey({ka}).

Fix o < n. Recall that jg, : V — M, = Ult(V, E,). We refer to the notions
(which will often be used for the rest of the paper) in the paragraph after Definition
We now list all key ingredients in M,,. Then we reflect the properties down
to a measure-one set with respect to E,(kq). Let 8 < a. We have the following:

A =jg, (7 sa(7))(ka) and A is regular (both in M, and in V).

o N =m0 B)R). |

o chﬁ()\é) > Ky > A, 80 cf Mo (A3) > cfv()\]B) > X =jg, (Sa)(Fa)-

o Eg = jp, (v h2(7))(ka), where hB(v) is a (kp, t2(7))-extender witness-
ing rg being Sa(7y)-supercompact.

o 1 = G (7 = dps oy (58)) ().

G (1) (Ka) = X
i (7 g o (50()) ()
Furthermore, if £ < 8 < a, we have that
(1) )\g < 5\2 < /{% < )\%, which directly translates to jg_ (t5) (ko) < jg, (U2)(ka) <
K < JB. (t0)(Ka) (recall k5 = jE, (v = Jys ) (5)) (Ka)).
(2)
350 (1 Gy o (1) (5)) () = 5, (85) ()
—\J
=X
= JE. (tg)(“a)~
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38 (Y T 4 ) (45) (59)) (o) = i, (u§) (5)
¥

Ef = jEﬁ(hg)(KOé)
=Jje.(v jhg(y)(hg)(“ﬁ))(ﬁa)

Finally, we note that (E3 : 8 < «) is coherent in M,. We present the order of
all relevant ordinals in Ult(V, E,) in Figure|l| below, when £ < 8 < «.

X) = sup jg, (A)
) Y<n
—-Xa = Jm, (V)

Ko = JEq (Ka)

X, = sup jp, (X) = jia (44) (Ka)

y<a
K5 = By (k8) = JEa (Y = Gy (K6)) (Ka)
5\?3 = sup jg, (A) = jg, (u2) (ko)

1<B
N = B (N) = i, (t6) (Ka)

— % = dre(5) = G (v Gy ) (56)) (o)

A = JEq (Ka)
Ky = sup Ky

g, Y<n

—— K3

—— K¢

FIGURE 1. Important ordinals presented in Ult(V, E,,)

Notice that in Figure [I] we have a few ordinals indicated by parentheses. The
main reason is that we do not assume 7 to be a limit ordinal. From the bottommost
parentheses, if n = a + 1, then R, = Kq, otherwise Kk, > k. We also have that
5\{3 > /\2, and they are equal if and only if 3 = £ + 1. The analogues also explain
the behaviors of A/, and 5\{7.

The intuition of the requirements for  to be a-reflected in Definition [3.1]is that
the requirements are what s, behaves in M, = Ult(V, E,). The collection of such
7 in Definition [3.1] is of measure-one, which is stated in Lemma [3.2

Definition 3.1. v < K, is a-reflected for the sequence (Eg : f < «) if

(1) v > Rq is inaccessible.
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(2) sa(7) is regular.

(3) If @ > 0, then for 8 < a, let eg = h2(7), then we have that
o fia < 5a(7) <uZ(Y) < ey (Kp) <TL(7)-

cf(ta (7)) > sa(9)-

.]65 (Sﬁ)(’i_ﬂ) = Sa('Y)'

t3(7) = Jes (8a(7))-

If @ is limit, then t2(y) < u2 (7).

e witnesses kg being s, (7)-supercompact.

The sequence (eg : 8 < «) is coherent.

< B < «, and e, eg are defined as above, ie. e = & () and

RE(),

o t5(7) < ul(y) <t (v).

o Jes () (K5) = t5.(7)-

o Jou(uS) () = u(3).

o cc = jo, (h5)(kp).

From our analysis, the following lemma is trivial.

(4) I

Hmoooooo

m'—h

Lemma 3.2. {y < kq : 7 is a-reflected for the sequence (Eg: < a)} € Eq(kq).

We will abbreviate the term (Eg : 8 < a) defined in Deﬁnitionif the relevant
sequence of extenders is clear from the context, so we sometimes say that v is
a-reflect. We emphasize some important different features between Eg and eg =
h2(v) as defined in Deﬁnition Let je, : V — Ult(V, eg). Then j., witnesses g
being s4 (y)-supercompact, where so(7) < K. Also, je,(Kg) < jes (5a(7)) = t5(7).
The reason we mention these matters is because later while a lot of definitions
are defined with respect to an extender, the definitions can be applied on the
appropiate reflections of extenders, which have different parameters. For example,
see a comment after Definition 3.3

We now introduce a notion of domain, which was first established by Gitik and
Merimovich, for example see [4].

Definition 3.3. Let a < 7. d is an a-domain (with respect to E,) if d € [N,
such that A +1 C d, for 8 < a, /cj )\7 )\J €d, and K, N, € d. leanadomamd
Define mc, (d) = (jg, | d)~ . Flnally, 1et A € E,(d) iff me,(d) € jg, (d).

Note that the notion of a-domain actually depends on the structure the extender
E,. If v is a-reflected and es = h2(y), then Definition is applicable for eg,
namely we can say that d is a S-domain with respect to eg, if d € [t2(7)]*>(") with
certain containment. This matter will be investigated further with some forcings’
features, which can be seen in, for instance, Definition [5.3] and [5.4}

We sometimes abbreviate mc,,(d,,) as mc, whenever d, and the relevant exten-
ders are clear from the context. The notion of a-domain is not ambiguous in the
following sense: if d is an a-domain, then we see that M, € d and for 8 > a, A\g & d,
so the ordinal parameter used to define the domains is easily distinguished.

Definition 3.4. Let d be an a-domain. p is an a-object with respect to the domain
d if p is a function such that

(1) dom(u) C d, rge(p) C A

(2) For B < a, /@ﬁ,/\j /\] € dom(u), and kg, k2, M, € dom(p).
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) Ko +1 Cdom(p)Nke = p(ka) < Ka-
) p(keq) is a-reflected.
) p is order-preserving.
) u(j(K)) = ki, as a consequence, rge(y | k%) C kqo. In particular, the
values u(na),u()\),u(mé),u(j\%), and ,u()\%) are below k, for 8 < a.
(7) For v < p(ka), p(y) =1 4 4
(8) sa(u(ka)) = p(N), ta(p(ka)) = n(Xp), ug(u(ka)) = p(Xy) for B < a.
(9) |dom(u)| = sa(ft(ka)) (Which is below kg, ).
(10) rge(p) 2 salp(ka)) > p(ka).
Definition 3.5. For an a-domain d, let OBg_(d) = {u : u is an « object with respect to d}.
We may just write OB, (d) instead of OBg_ (d) if E, and d are clear from the con-
text.

We visualize a typical a-object p in Figure [2] below, where in the figure, 8 < «
is fixed.

X,
K
j\j
X
~s
3J
X5
A A
Ko —€ Rq
(X)) = ta (1(ka))
. y’()‘) = Sa (#(na))
w(Ka) & p(ka)
Ko +1 Rq +1
kg
0 0

FIGURE 2. A diagram of a typical a-object

In Figure [2, the left vertical line represents the domain and the right vertical
line represents the range. The arrows from the left-hand side to the right-hand
side represents how the a-object 1 maps some certain values. The parts which are
highlighted with bold lines and the bold dots are guaranteed to be in the domain
or the range. The parts in the domain which are represented by the dash line and
the dash-line circle are guaranteed to be missing from the domains. Note that the
top ordinals, i.e. AJ, and A, are not in the domain and the range, respectively. The
most important feature of the a-objects, which is said in Definition is that all
important ordinals defined from Ejg, including A, are mapped to ordinals below &,,.
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The notion of objects is not ambiguous in the sense that if p is an a-object, then
[dom(p)] € (Fas Ka)-

Proposition 3.6. If d is an a-domain, then OBg,_(d) € E,(d).
Proof. We will show that mc,(d) € jg, (OB,(d)). Abbreviate mc,(d) by mc,.

Obvious by the definition of an a-domain, and the definition of mc,.
dom(mc,) N K, = Ko = mcy (k) and ke < K.
Ca(Kl) = Ra.
Cq 18 ordgr—preserving.
calir. (1)) = .
crit(jp,) = Ka. Hence for v < ko, mc(jg, (7)) = v = jr.(7) (note that
Ko = mc(jg, (Ka))- ]
(8) jin (50) (a5, (Fa))) = Jisa(50) () = A = mea(N). The rests are
similar.
(9) |mcy | = |d| =\ < K. .
(10) rge(mca)) =d 2 A = jg, (sa)(Ka) = JE, (5a)(mca(K)))-

B BB

(]

We assume that for every A € E,(d), A C OB,(d). Note that although E,(d)
is only an k,-complete ultrafilter, each A € E,(d) has size \. We may add extra
properties into the definition of an a-object as long as the properties are reflected
from mc,. For example, for v < A, such that v € d, if we let Ag, , be the least
ordinal & < A such that v < jg_ (&), then there is a measure-one set of u such
that v € dom(u) and p(y) < Ag, ., If je,(y) € d, we can even assume that
w(je, (7)) = ~. For each fixed a C d of size less than k,, we may assume that each
a-object p has a domain containing a.

Proposition 3.7. If a Cd and |a| < Kq, then {u:a C dom(p)} € Ey(d).

Definition 3.8. Let f < a < 1, dg and d, be 8 and a domains respectively, and
dg C dy. Let A € Eg(dg) and 7 € OBy(dy). Define A, as {u € A : dom(u) U
rge(p) € dom(7)}.

Lemma 3.9. Let 8 < a < n, dg and do be 5 and o domains respectively, and
dg Cdy. Let A€ Eﬁ(dﬁ). Then
{1 € jr.(A) : dom(p) Urge(u) C dom(mey(dy))} = jg, [A].

Proof. (2): For p € A, |pu| < kg < Kq, so dom(jg, (n))Urge(je, (1) € jE. [dsUA] C
dom(mc, (dy)).

(©): Let p € jg, (A) be such that dom(u)Urge(u) C jg, [do]. Then each ordered
pair (70,71) € u is of the form (jg_ (7)), e, (71))- Since every object in A has size
less than kg, so is . Thus, we have that u = jg, (1) for some p/, and so p' € A.
Therefore, p € jg_ [A].

]

Definition 3.10. Let 8 < oo < 7, dg and d, be 8 and oo domains respectively, and
dg C do. For each p € OBg(dg), let A, € E,(dy). Define the diagonal intersection
of (A, : € OBg(dg)) as follows:

Dpeog(az)Au = {7 Vi € OBg(dg)(dom(p) Urge(p) C dom(r) = 7€ A,)}.
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Lemma 3.11. With the settings stated in Deﬁnition we have N coBg(ds) Ap €
E.(dy).

Proof. Let B = JE.((A, © € OBg(dg))). Write B as a sequence (B, : T €
JE.(OBg(dp))), where B;, () = jg,(Ay) for all u € OBg(dg). For u € OBg(dp),
mc,(do) € By, (). Note that by Lemma the collection of i € jg,(OBg(ds))
such that dom(p)Urge(p) € dom(mce, (dy)) is exactly jg, [OBg(dg))] and mc, (dy)
NueoBs (ds) Bip, (> hence, mey, (da) € jp. (DpucoBa(ds)An)-

€

O

Before we investigate further on the interactions between two extenders, we
provide some conventions. For each function f whose domain is an a-domain, and
f(ka) is a-reflected for (Eg : B < ), we denote sa(f(Ka)), t3(f(ka))ul (f(Ka)),
and h2(f(ka)) by Aa(f), Aol 5\%7a(f), and eg o(f), respectively. Note that
those values actually depend only on f(kq).

Lemma 3.12. Let 8 < o < 1, dg and d be B and o domains respectively, and
dg C do. Let A € Eg(dg). Let B be the collection of pn € Eqo(dy) such that by

letting eg = eg,o (1),

(1) pldg] is a B-domain with respect to eg.
(2) poA,op=t €eg(uldgl), where A, is defined as in Definition .

Then B € Eqy(dy)-

Proof. First, notice that mc,(do)[jE, (dg)] = dg is a S-domain with respect to Eg.
To show the second item, by Lemma {r € jg, (A) : dom(7) Urge(r) C
dom(mcy(dy))} = i, [A]. Note that

mc, (dy) 0 jp, [A] o meg (dy) ™t
=mcy(dy) o {7 € jg, (A) : dom(r) Urge(r) C dom(mc,(dy))} 0 mey(da) ™
i (10 Ay o ) (nca(da)):

Let 7 € A and f = mc,(dy) 0 jg, (7) o mea(dy) ™!, Note that v € dom(f) iff

v € da, jr,(v) € je,(dom(7)), and jg_ (7(7)) € jr,[da]. Since rge(r) C A C d,

and dom(7) C dg C d,, we have that dom(f) = dom(r). A straightforward

calculation shows that for v € dom(f), f(y) = 7(y). Hence, f = 7, and so
me,, (da) 0 g, [A] o mey (da) ™' = A. The proof is done.

O

Definition 3.13. Let 8 < . Fix the f-domain and the a-domain dg and d,,
respectively, and assume that dg C do. Let A € Eg(dg). Let p € OBy (dy). We
say that p is (B-)squishable with respect to A if o A, opu~! € eg(u[dg]) where
es = eg,a(1). The notion po A, o pu~t is called the conjugation of A, by p.
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N X,

= Heighy
of domy
7)1,
8e(7

S

1) > 3
7(ks) 4 $ 3

V.

FIGURE 3. The conjugation pto 7o p~! for an a-object i and a
T E A/g

In Figure [3] we exhibit the situation when 8 < a < n, 7 € Ag € Eg(dg),
u € Ay € Eo(dy). From left to right, the diagram shows the maps p=!, 7, pu,
respectively. We can see from the bold arrows and the gray dot-line that the
resulting conjugation is a partial function from 2 (u(kq)) to sq(p(ke)). A similar
diagram, which is obtained by replacing the middle part of the diagram in Figure

by the function f in Definition [3:17] also explains the situation in Definition [3.1

Definition 3.14. Let 7 is be regular and cf(y1) > 7o, define a poset A(vyo,71) as
the collection of functions f such that dom(f) C ~1, rge(f) C v, and |f]| < 7o.
Define f < g iff f O g. We also define a Cohen forcing with a certain restriction on
the range.

The forcing is v -closed and is v; "-c.c., so A(79,71) preserves all cardinals and
cofinalities. The forcing A(vo,7v1) is equivalent to the Cohen forcing adding |v1|
new subsets of ;.

Lemma 3.15. Let f < a < 1, dg and do be B and o domains respectively, and
assume that dg C dy. Let f € A(A,Aé) with dom(f) = dg. Let B be the collection
of u € Eq(dy) such that by letting eg = eg o (1),

(1) fldom(s)] C dom(y).

(2) pldg] is a B-domain with respect to eg.

(3) po fou™t e A(sa(7),t5(7)).

(4) if rge(f | %) C s, then rge((o f o u™) T jey(5)) C 5.

Then B € Ey(dqy)-

Proof. To check the first item, note that jg_(f)[jg,[d]] = jE. [rge(f)] C jr, [N C
JE.[da] = dom(mc,(dy)). The second item is proved in Lemma Next, we
prove the third item. Let F = mc,(dy) o jg, (f) o mca(dy)~t. Then we see that
v € dom(F) iff v € d, Ndom(f) = dom(f), and for v € dom(F), F(vy) = f(v).
Hence, F' = f. Finally, observe that Ez = jg (¢ — ega(p))(meq(ds)) and if
rge(f | HJB) C kg, then rge(F f/i]é) =rge(f | HJB) C kg.



14 SITTINON JIRATTIKANSAKUL

d

We define a Cohen subforcing of the forcing of the form A(yp,71) by adding
a constraint on each Cohen condition. The subforcing will have the same chain
condition and closure.

Definition 3.16. Let B¢ (), /\jB) be the collection of f € A(\, )\%) such that rge(f |
Iijﬂ) C kg, where we emphasize that )\é = )\JBEB = jus(N). Let v < ko be a-reflected
with respect to (Eg : f < a) and 8 < o Let X = sa(7), (\3)! = t2(7), and eg =

hE(v) (which is a (g, (Afg)j)—extender witnessing kg being )\’—SupercompaQt. Define
Bes (N, (/\’B)jeﬁ) as the collection of f € A(N, (/\g)j“‘ﬁ) such that rge(f | /@'gﬂ) C kg.

Definition 3.17. Let 8 < . Fix the S-domain and the a-domain dg and d,,
respectively, and dg C d,. Let f € BEs (A,)\%), dom(f) = dg. Let p € OB,(d,)
with v = u(kq). We say that p is (8-)squishable with respect to f if f[dom(u)] C
dom(p), po foute Beﬁva(“)(sa('y),tg(y)). The notion g o f o pu~! is called the
conjugation of f by p.

Definition 3.18. Let 8 < a. Fix p € E,(d,) for some a-domain d,. Assume
a is either (f) or (f, A) where f € BP#(X\,\}) and A € Eg(dom(fs)). Then u is
a-squishable if p is f and A squishable (if A exists).

Let p be the sequence (pg : f € [, a)) where pg is either (fs) or (fz, Ag),
fs € BEs (), )\%) and Ag € Eg(dom(f3)), p € Eqn(dy) for some a-domain d,. Then
w is p-squishble if for 8 € [€, a), p is pg-squishable.

Our forcing will be of Prikry-type. An important feature of the forcing is that
once one performs an extension using a legitimate a-object, (one of the require-
ments for a legitimate object is that it is squishable), then for § < «, all the Sth
components appearing in the forcing will be “squished”. To present a rough idea,
in Lemma if 8 < a and A € Eg(dg) for some S-object, then the conjugation
of A, by u € Ey(da) is of measure-one in eg o (p)(1[dg]). The height of eg (1) is
below k.. We will see that the “squished” Sth components in our forcing will lie
in V. In fact, they will live in V,, for some v < ko, where v depends on p(kq).

Later we define forcings and repeat some certain notions very often, so we give
notions to compact our description. If p is of the form (f) or (f, A), where f is a
function, we denote f,dom(f),rge(f), and A by fP, dP,rP and AP, respectively. If
p = (ps: B < ) where pg = (f3) or (fs, Ag), we denote fg,dom(f3),rge(f3) and
Ap by f§,dj, 1, and Aj, respectively. We sometimes remove the superscript p if
it is clear from the context.

4. FORCING WITH A SINCLE EXTENDER

We begin with the simplest case, only one extender. We drop all the subscripts
0 here. Recall that we have a (x, \)-extender E (recall AJ = j(\)) where j is the
elementary embedding jg : V — M = Ult(V, E) witnesses k being A-supercompact,
A is regular, and there is a function s : K — k such that j(s)(k) = A.

Definition 4.1. We define a forcing }P’@E where the conditions are of the form
p = (f, A) such that f € B¥(A\, M), and by letting d = dom(f), we have that d is
a (0-)domain, and A € E(d). For p = (fP, A?) and q = (f?, A9), in P?, we define
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p<gqif fP < f9and AP | d? C A? (we call the last relation “AP projects down to
a subset of A?”).

Definition 4.2. Define IP’%O} as the collection of {f) for f in B¥ (X, M). The ordering

in IP’%O} is just the usual ordering.
Definition 4.3. Let Py = P UPL

We drop the subscript £ to make notations simpler. For example, we have seen
that we wrote M\ instead of MZ. We may also write P to refer to Pg. Define a
direct extension <* on P as <ps U <p(oy. If p € IP’@, we say that p is pure, and we
write the support of p as supp(p) = 0. Otherwise, p is said to be impure, and we
write the support of p as supp(p) = {0}.

Definition 4.4. Let p € PY and y € AP. The one-step extension of p by p1, denoted
by p + p, is simply just f? @ p. Note that fP @ pu € P{0},

Definition 4.5. Define < on P by p < ¢ if p <* g or p is a direct extension of a
one-step extension of q.

It is easy to check that if r <* ¢ + p and ¢ <* p, then r <* p+ (u [ dP). Using
this fact, the relation < is transitive.

Theorem 4.6. P has the Prikry property.

Proof. Fix a Boolean value b. If p is impure, the proof is easy. Suppose p is pure.
Let B = BZ(\, M) (this is exactly P{°} but we want to distinguish them as P10}
refers to impure conditions). First, we show that there are

(1) N < (Hp,€,<) for some sufficiently large regular cardinal 6, where <
is a well-ordering on Hy, such that |[N| = XA and <*N C N such that
MM, b,p,P€ N and fP, A\ C N.

(2) f' < fP which is N-generic, meaning for each open dense set D in N with
respect to B, there is f € D N N such that f/ < f < fP (as a consequence
f' e D).

To accomplish the construction, we build an internally approachable chain of
substructures of (Hp, €,<) for some sufficiently large regular cardinal 6, and a
well-ordering < on Hpy, namely a sequence (N, : o < k) such that N, < Hy,
<RN0¢ - Na+l; |Na‘ = )\,)\j,b,p,]P’ € Ny, )\,f C Ny, <NB : 5 < Oé> S Na+1, and
if o is limit, No = Uy Na-

Let N = e, No- It remains to find f’. We build a decreasing sequence
(f*: a < k) of elements in BN N such that f* € No.1, f© < fP, and f® meets
every dense open set in N, NB. Note that this is possible since (N3 : 8 < &) € Not1
and B is AT-closed. Take f’ as a lower bound of (f*: a < k).

Now let N and f’ be as described above. Let d’ = dom(f’). By our construction,
d’ is simply just N N\, Let A’ € E(d'), A’ projects down to a subset of AP. For
we A, dom(pu) Cd, rge(n) C Aand |u| <k, sop€N.

Fix u € A’. Define D, as the collection of f € A(X\,\’) such that dom(p) C
dom(f), and if there is g < f @ u such that ¢ || b, then f & pu || 0.

Claim 4.6.1. D, is open dense below fP and is in N.

Proof (Claim [4.6.1))
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We actually prove that D, is open dense, which is stronger that the statement.
Clearly D,, is open. Since D, is defined using parameters in N, D,, € N. To check
the density of D,, let f € A(X\,N). By the density, assume dom(u) C dom(f).
Find a condition g < f@® u such that g decides b. Define ¢’ with dom(g’) = dom(g),
g (v) = f(v) if v € dom(f), otherwise, ¢’(v) = g(v). Clearly ¢’ < f and ¢’ B p = g,

so g € D.
B (Claim [4.6.1))
By genericity, f € D,. We have the following property for f’ (call it (x(f’))):

(*(f") For p € A, if there is g < f' @ u such that g decides b, then f' @ u
decides b.

Let Ag be the collection of p € A’ such that there is g < f such that g ® p I b.
Hence, for p € Ao, f' @ pl-b. Let A = A"\ Ag. It is easy to check that if p € Ay
then f" @ p IF —b. Exactly one of Ay and A; is of measure-one, call the one of
measure-one B. Let p* = (f’, B).

Claim 4.6.2. p* <* p and p* decides b.

Proof (Claim

Clearly p* <* p. Let ¢ < p* be such that ¢ decides b. Assume ¢ is impure.
Without loss of generality, assume ¢ IF b. Then g <* p* + u for some pu € B. By
the property of (x(f")), f' @ u Ik b. Thus, B = Ay and for every p € Ay, f' @ p Ik b.

By the density, p* IF b.
H(Claim |4.6.2)
O

Forcing with P is equivalent to adding A’ new Cohen subsets of AT, while pre-
serving all cardinals and cofinalities.

5. FORCING DEFINED FROM TWO EXTENDERS

In this section we deal with the case where the forcing is defined from a sequence
of extenders whose sequence length 2. The proof of the Prikry property in this
section requires the Prikry property of the forcings defined sequences of extenders
whose lengths are 1 (i.e. the forcing in Section [l]). In Section [, we define a
forcing with any length of a sequence of extenders, including any finite lengths. The
structure of the proof of the Prikry property in this section can apply to forcings
defined from sequences of extenders whose sequences have finite lengths greater
than 1, assuming the Prikry property holds for forcings defined from sequences of
extenders of shorter finite lengths.

Definition 5.1. A forcing IP(?EO B consists of conditions of the form p = (pg, p1),
where for n = 0,1, p, = (fP, AR), f2 € BE~(\ \)), d? = dom(fP) is an n-domain,
A, € E,(dF), and df C d. A condition in IF’(?EO &,y 18 said to be pure.

Definition 5.2. A forcing ngj B) consists of conditions p = (pg,p1) such that

Po € IP’{E?J} and p; € PY and df C df.

Definition 5.3. A forcing IP’EE) B consists of a condition p = (pp,p1) such that

bo = <f(§)7Ag>7 pP1 = <fin> such that
(1) fle BEL (A, A1), df is a 1-domain with respect to Fj.
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(2) f{(k1) is 1-reflected for the sequence (Ey, Ey).
(3) f§ € BorUDN(f]), X1 (f7)) (Recall that Xy (f7) is #9(f7 (k1)) where
Jg, (1) (k1) = X)), e0.1(fF) is h9(f¥(k1)), which means that rge(f5 | jeO’l(ﬁ?)(Iio)) -
KQ-
(4) db = dom(f}) is a 0-domain with respect to eg 1(f7).
(5) Af € eoa(f1)(dp)-
Equivalently, pg € P? . and p1 € pio
eo0,1(f1) E

0,1 1

Definition 5.4. A forcing ngﬁ}El) consists of a condition p = (pp,p1) such that
pn = (f2) where

(1) f2 e B (A N) and & is a 1-domain.
(2) f{(k1) is 1-reflected with respect to (Eo, E1).
(3) f2 e Beor U (N (1), o1 (f1)) (we recall some relevant notations in Defi-

nition .

(4) db is a 0-domain with respect to eg 1(f7).

Equivalently, pg € Pig}( and p; € PE}-

A7)
For a condition p which is described in Definition or it is automatic

that for each condition p, df Urf C d}. For a C 2, we define gP?EO,En to be the
coordinate-wise ordering. Let P(p, g,y = UaQP((lE(,, By Define a direct extension
relation <* on P(g, g,y to be Uso2 SP?EO«E1>.
We sometimes abbreviate P g, g,) as P, and abbreviate other forcings in a similar
fashion, i.e. we abbreviate IP”ZEO’E1> as P?, written as supp(p) = a. Note that p is
pure if supp(p) = 0. We say that p has support a if p € P*. We say p is impure if

supp(p) # 0.

Definition 5.5. Let p € P, 0 ¢ supp(p) and u € Af is squishable. then we
define the one-step extension of p by p is a condition ¢, denoted by p + u, with
supp(q) = a U {0} such that

(1) g = (fg & p).
(2) 1 = (fF) if 1 & supp(p), otherwise ¢1 = (f}, B1), where By = {u; € A} :
w1 is (f§, AP)-squishable and dom(p) Urge(u) C dom(uq)}.

Definition 5.6. Let p € P, 1 ¢ supp(p) and u € AY is po-squishable. Then one-step
extension of p by u, denoted by p+ p is a condition ¢ € P*{1} such that

(1) fi=fHenp

(2) fo=npoffont

(3) Al = po (Af), o™t (if AF exists). Recall that (AF), = {r € A4} :
dom(7) Urge(r) C dom(p)}.

p is a 2-step extension of ¢ if p = (g+ ) + ' for some objects p and 1/, and their
one-step extensions are legitimate. We denote (q + p) + 1’ by ¢ + {(u, 1). Finally,
for p,q € P, we say that p < g if p <* ¢, p is a direct extension of a 1 or 2-step
extension of q. Before we make an analysis further, we give a picture of a situation
in Definition [5.6] where p is a pure condition.
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N
N— X
A1 - A A — A
fo "1 -
dy = dom(fy) [ > di = dom(f1)
(%) = 19 (u(k1))
1(A) = s1(p(k1))
There is a measure-one set There is a measure-one set
Ao € Ey (do) )\j Al € E; (dl)
| —
- A
hHop
K14 e
dy = dom(fy ® p) ‘5\)
#(X)
-1
dom(po foo p;[-ﬁ?_fg-?!f. __q_ 'LL()\)

=i
poAgop~t € hl(u(k)) no measure-one set

FIGURE 4. A one-step extension of a pure condition using a
1-object

In Figure[d] the first diagram shows how a pure condition p looks like, while the
second diagram is a condition which is a result from performing a 1-step extension
of p by a 1-object p. The bold bars represent how high domains and ranges can be
(they do not represent that domains and ranges are initial segments of ordinals,
and in fact, they may not). From the figure, we see that after performing the one-
step extension, the first coordinate of the condition lies in Vi, (actually, it lives
in Vu( Y )). The wiggle lines represent how the maps of Cohen parts are like. The
straight lines in the first diagram indicate the map from a few crucial values of
dom(p). We make an analysis on the ordering < on P.

Lemma 5.7. (1) Let i € {0,1}. Let p be a condition such that i & supp(p)
and ¢ <* p. Suppose pu € Al, p is (E, : n & supp(q))-squishable. Then
q+p<*p+(uld).

(2) The ordering < is transitive.
(3) Suppose p is pure and q is a 2-step extension of p. Then there are p; € A?
for i =0,1 such that ¢ = p + (o, 1) = (1 0 po © py ' pa)-
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Proof. (1) We will show the case p is pure and ¢ = 1 since other cases are
easier to prove. Let 7 = u [ d). First note that since ¢ <* p, 7 € A}, Tt
is straightforward to check that since u is gg-squishable, T is pg-squishable.
Let r =g+ p. Since fI< fland u 27, ff =po flopt <roflor L
Since A | d C Af and p D 7, po (A}), o u=! projects down to a subset
of To(Ah), or! Finally, fi=fleopu< ffeor,sor<*p+r.

(2) Let p < g < r. Tt is trivial if p <* ¢, otherwise, we apply to show
that every object in ¢ used in the path to extend g to p corresponds to the
restriction of the object to the corresponding domain in r, and hence, p is
a direct extension of some n-step extension of r, so < is transitive.

(3) From the context, the 1-object we used to extend is always uq. It is im-
portant to be aware of the objects we are allowed to use to extend. Note
that there are two possible ways to extend p using 2 objects. The first
way is to first extend p using a 0-object po in Af, then extend p + uo
further using a 1l-object p; in a subset of A}, namely the set By de-
fined in Definition [5.5] The second way is to extend by a 1-object s
first, and then a 0-object py o g o puy' € py o (AB),, o uy'. In both
cases, dom(pg) U rge(ug) € dom(py). From the first way, we see that
from Definition w1 is (f&, Ab)-squishable. In the second way, since
w1 is (ff, Ab)-squishable and dom(uo) U rge(po) € dom(uy), it concludes
that pq is (f§ & po)-squishable. In both cases, the orders of the objects
to perform one-step extensions can be commuted. Since the 1-object we
use is always pq, it is enough to show that the final conditions of the
extensions in both ways are equal at the 0-th coordinate. Equivalently,
pro (ff @ po)oprt = (o f§opr?) ® (mopoopt). The fact that
dom(po) U rge(uo) € dom(py) and py is po-squishable implies that the
equation holds.

O

Proposition 5.8. Suppose that p € P with 1 € supp(p). Then P/p is factored into
Po =P, ,(s7) and Py = BEL(A\, M), Po is M\ (f]) T -c.c. and (Py, <*) is AT -closed.
If 0 € supp(p), then Py is A\ (fF) " -closed.

Proof. Note that for each condition in Py, its Cohen part lives in Bt () (X, (fP), )\6,1 (f))-
By astandard A-system argument, the poset B¢ (1) (A (), )\6’1 (PN is A (ff)*t+-
c.c., and is A\ (fT)T-closed. If go,g1 € IBeOvl(ff)()\l(ff),A%ﬁl(ff)) are compatible,
say g < 90,91, Bo € €0,1(f¥)(dom(go)), and By € eg,1(f)(dom(gy)), then we can
find B such that (g, B) < (g0, Bo), (g1, B1) by finding B € e 1(f})(dom(g)) which

projects down to subsets of By, Bj.
O

Lemma 5.9. Let p € P and 1 & supp(p). Let f' < f¥ with d = dom(f’). Let
A" e E\(d'), A" projects down to a subset of AY. Assume that for each pn € A" with
| di being po-squishable, we have t(p) <* (p+ (u I d}))o in Pey, (). Then there
is a condition ¢ <* p such that

(1) fI<f', and A projects down to A’.
(2) forTe Al withp=71[d, (¢+71)o=t(n).
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Proof. Let d = dom(f’). We may assume p is pure (the case supp(p) = {0} is
slightly simpler). Let p§ = jg,(u — ¢(un))(mci(d")). Write p§ = (fF, AS) and
dfy = dom(fF). Notice that

po <" je (e (p+ (i 1 d7))o)(mer(d))
(JE1 (p) + mey(d') [ jg, (d7))o
= (Je (p) +mer(d]))o
= (mey (df) © jip, (f§) o mey (df) ™", mey (df) o j, [AF] 0 mey (df) 7).

The last equation follows from Lemma [3.9] Exact calculations in Lemma
and Lemma [3.15] show that

mey (d}) o jg, [AB] o mey (df) =1 = Af
and

mey (dY) o jg, (f§) omei(df) ™! = fg.
Hence, pj is a direct extension of po.
Let f; € BE1(\ \]) with dom(f;) = d’ Ud} =: d} be such that fi(y) = f'(v) if
~v € d', otherwise f(y) = 0.
Since djj C d7, we have that

mey (df) o jm, (fg) omey (df) ™' = f5

and
mcy (d7) o jg, [Ag] o meq (df ) = Aj.

Let A7 be the collection of 7 € Ey(d}) such that the following hold:
(1) 71 d' € A’, which implies that 7 | df € Af.
(2) by letting u = 7 | d’, we have that 7o fio7~! = fé(“) and 70 (Ag), o171 =
At(ﬂ)
o -
Then Aj is of measure-one. Let ¢ = (pg, (f7, 4%)). The condition ¢ is as required.
O

Theorem 5.10. P has the Prikry property.

Proof. Let b be a Boolean value, and p € P. Let B; = BF1(\, X). We will divide
into two cases.
CASE I: 1 € supp(p). Note that 0 := [P, (7| < r1. Enumerate P, (r) as
{to : @ < 0}. Build a decreasing sequence {fi o : @ < 8} recursively such that
(1) fio= 11
(2) for a < 6 limit, let f1,o = Ug<a f1.5-
(3) for a = B+ 1, if there is g < f1,5 such that 5 (g) decides b, then t5(f1,a)
decides b.
The construction is straightforward, and can be proceeded until and including
the stage 6 since By is AT-closed and 6 < k. Let f{ = f1¢. Note that eg1(fY) =
eo1(f1) since fP(k1) = f{(k1). We record the following property about f; (call it

(+(f1))):
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(x(f1)) For each t € P, (sr), if there is g < fi such that ™ (g) decides b, then
t™(f1]) decides b.

Let G be the canonical name for a generic object of the forcing Pey (7). By the
Prikry property for a forcing defined from one extender, let p§ <* py such that pj
decides the following statement:

e=3p € G (f]) || ).

If the decision is positive, we may extend pg further so that exactly one of the
following holds:
o py -3 € G/ (f]) I b).
o py - 3p" € Gp'™(f1) IF —b).
If the decision is negative, by extending further, assume p{ is such that p{ I+
B’ € G/ (f1) IF b). Let p* = p5~(f])-

Claim 5.10.1. p* <* p and p* decides b.

Proof (Claim [5.10.1)

Clearly p* <* p. Let ¢ < p* be a condition deciding b, so qo < p§. Without loss
of generality, assume ¢ I-b. By *(f1), q5 (f1) IF b. We claim that pg IF ¢. Suppose
not, let G be a generic for P, ;) containing go, so pj € G. Then there is no
r € G such that r—(f1) decides b, but g5~ (f1) IF b, so we reach a contradiction.

Similar proof eliminates the case of positive decision with respect to the Boolean
value —b. Hence, we conclude that pj IF 3p’ € G(p' ™ (f;) I b). We now show that
p* IF b. Suppose not, let » < p* be such that r I =b. By the property (x(f7)),
ro (ff) IF =b. Let G be a generic containing o, so containing p{, find ' € G such
that '~ (f5) Ik b. Now if 7 < ¢/, rg and 7 € G, we have that 7~ (f;) IF b, =b, which

is a contradiction. Hence, the proof is done.
H(Claim

CASE 1II: 1 ¢ supp(p). Let N < Hy for some sufficiently large regular cardinal
6 such that N is internally approachable in the way described as in Theorem [4.6]
witnessed by a sequence of elementary submodels of length 1, |[N| = A, <"* N C N.
, )\,)\{,b,p,IP’ € N, ff;X C N, and there is f{ < fI be N-generic over By, and
dy = dom(f}) = NN X. The construction of such N and f] is similar to the proof
in Theorem Let Ay € Ei(d}), Ay | df C AY. For p € A}, dom(u) C df,
rge(pn) C A, and |pu] < k1, 80 p € N.

Fix p € A). Define D,, as the collection of f € By such that dom(u) € dom(f),
and for every t € Pe, (), if there is g < f' @ p such that ™~ (g) decides b, then
t(f" @ p) also decides b.

Claim 5.10.2. D,, is open dense below f} and is in N.

Proof (5.10.2)

Clearly D, is open. Since D, is defined using parameters in N, D, € N.
To show density of D,, let f < fI. We may assume dom(y) C dom(f). Note

that v := |Pe, ()| < #1. Enumerate Pe, , () as {ta : o < v}. Build a sequence
(f1,a : @ < v) such that
(1) fio=1r

(2) for a < v limit, let fi o = Ug<afig.
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(3) for @ = B +1, find f1 o < f1,8 such that if there is a g < f1 5@ p such that
to " (g) decides b, then t, " (f1,o ® u) decides b.
Note that B; is A*-closed We can apply the argument from the proof of Claim
for a construction on the successor stages. Then f; := f1, € D,,.
m(5.10.2)

By a genericity of f{, we have that f{ € D,. We record the following property
for f{ (and call it (%(f1))):

(x(f1)) For each € A} and t € P, (., if there is g < f| @ p such that t™(g)
decides b, then so is t~(f] & p).

Fix p € A}. Let G be the canonical name for the forcing Pe, ,(u)- By the Prikry
property for a forcing defined from one extender, let ¢(u) <* (p+ (u | d¥))o such
that ¢(u) decides the following statement:

p=3te Gt {fiow |l

We may extend ¢(p) further under the direct extension so that exactly one of
the following decisions on ¢(p) holds:

o t(p) -3t e Gt~ (f] @ p) IFb).
o () IF3t € Gt~ (f] & p) Ik =b).
o () I-Bte G (fi@u | D).

Shrink A so that every u € A} makes the same decision. Apply Lemma [5.9] for
fri=f1 < A = A € Ey(dom(f))) and t(u) for each p € A}, to find ¢ <* p
such that

(1) fi < fi.
(2) For 7 € A} with u=171 [ dy, (¢+ 7)o = t(p).

Claim 5.10.3. ¢ decides b.

Proof (Claim [5.10.3)

Let r < ¢ such that r decides b. Without loss of generality, assume r IF b. and
r < q+ 7 for some 7 € A]. Let u =7 | d|. Hence, ro < t(p). Since f] < f{ & p,
by (x(f1)), r5{f1 @ p) I+ b. A proof which is similar to the proof in case I of
Claim shows that t(u) IF 3t € G(t™(f;) IF b). Hence, for every 7' € A? with
W=7 dy, () IF 3t e Gt (ff @ p) Ik b). Again, an argument which is similar
to the argument in the proof in case I of Claim[5.10.1]shows that ¢(u/) ™ (f{®u/) IF b.

Thus, by the density, ¢ IF b.
B (Claim [5.10.3)
a

6. FORCING WITH COUNTABLY INFINITE EXTENDERS

Assume the result from Theorem [2.14] for n = w. As mentioned in Section [5] we
use the Prikry property of the forcings defined from sequences of extenders of finite
lengths.

Definition 6.1. A forcing P (g, .n<.,) consists of conditions p, and a support of p,
which is supp(p) € [w]<%, of the form p = (p, : n < w), where
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P = (fn) if n € supp(p),
! (fn,Apn) otherwise,

and for each n < w such that supp(p) \ (n+1) # 0, let n* = min(supp(p) \ (n+1)),
otherwise, n* is undefined, then the following hold:

(1) for each n where n* does not exist,
e if n € supp(p) (which is exactly when n = max(supp(p))), then
fn € BEA(A\, M), d, = dom(f,) is an n-domain with respect to
E,, and if n > 0, f,(k,) is n-reflected for the sequence (E,, : m €
[max{0, max(supp(p) Nn)},n)).
o if n ¢ supp(p) (which is exactly when n > max(supp(p))),
— fo € BE(A ).
— let d,, = dom(f,) is an n-domain with respect to E,, and A, €
E.(dp).
(2) for each n where n* exists,
e if n € supp(p) (which is exactly when n = max(supp(p) N n*)),
then f, € IB%Envﬂ"(f”*)()\n*(fn*)y)\ZML*(fn*))7 dp, = dom(f,) is an n-
domain with respect to ey n*(fnx), and if n > 0, f,(ky) is n-reflected
for the sequence (em n+(fn+) : m € [max{0, max(supp(p) N n)},n)).
Recall that Ap«(frn=) = Sp=(fnx(kn=)) where jg . (sp«)(kn=) = A,
Ny (far) = tne(foe (Kn+)) where jpg . () (kpe) = N, and N, =
JE.(A); and ey (frr) = hpe (fr (Kn+)).
e if n ¢ supp(p) (which is exactly when n € (max{max(supp(p) N
n*),0},n%)), 4
— fa € B U ) (N (fe), AL = (fnr)), and dy, := dom(f,,) is an
n-domain with respect to ep p= (frr).
- rge(ffl’ rjenyn*(fn*)("in» C Rn.
— An € enpx (o) (dn).
(3) for max(supp(p)) <m <n < w, dpy, C dy.
(4) if m < w is such that m* exists, then for each m <n <m*, d,,, C d,,.

A condition p is pure if supp(p) = 0. Otherwise, p is said to be impure.

Definition 6.2. For p,q € P. We say that p is a direct extension of g, denoted by
p<qif

(1) supp(p) = supp(q).

(2) foralln <w, fP < fa.

(3) for n & supp(p), AL | df, C AS.

Notice that if p <* ¢, then for n € supp(p), fE(kn) = fI(kn). Thus, A\, (fF) =
An(f4), and for m < n, M, . (f8) = M, ,(f), and enn(fF) = emn(f)-

Definition 6.3. Let p € P and n ¢ supp(p). Let p € AL be (p,, : m €
[max{0, max(supp(p) N n)},n))-squishable. The one-step extension of p by p is
the condition ¢, denoted by p + p such that

(1) supp(q) = supp(p) U {n}.
(2) for m < max{max(supp(p) N n),0}, gm = Pm.
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(3) if n* = min(supp(p) \ (n + 1)) exists, then for m € (n,n*), gm = (f?,, Bm)

where B, = {r € AP, : dom(u)Urge(p) C dom(7) and 7 is (f?, AP )-squishable},

and for m > n*, ¢, = pm.

(4) if n* does not exist, then for m > n, ¢, = (f?, By,) where B, = {7 €
AP dom(p) Urge(p) C dom(7) and 7 is (fE, AP)-squishable}.

(5) fi=flen

(6) for m € [max{max(supp(p) N n),0},n), f4 = po fP ou ! and A4 =
o (Ah)opn .

3
X
X
—_T—A A pneE A;s A A
Ka—4—
\ K1 [ e PR I SR Lo F---- '_f4_ S
fi( O)T L (A)
........... h ;I
........... > W
0 2 3 4 -
May or may not have a No measure-one set There is a measure-one set There is a measure-one set There is a measure-one set
measure-one set Ay € Es(dom(f2)) A3 € E3(dom(f3)) Ay € Ey4(dom(fy))
N—
N—
1A A
. r3——
; #0%) :
”le) S ey hou i
i pofiopt § o [TTTTToemm-n 1 [T
%) L(V) pofrop!
........... ho . J
0 ) . 2 3 4
The measure-one set (if No measure-one set There is a measure-one set No measure-one set There is a measure-one set
exists) is the same pwodyo ;fl c A5 ={r € Ay
h3 (u(3)) (u[dom(f2)]) dom(7) Urge(r) C dom(u)}

A3 € Ey(dom(f1))

FIGURE 5. A one-step extension of a condition p with
{1} C supp(p) C {0, 1} using a 3-object u

We exemplify on how one-step extension works. From Figure [5] we start with
a condition p with {1} C supp(p) C {0,1}, which is exhibited at the upper-half
of the figure. Each p, is either (f,) or (f,, An). Fix a 3-object u. The condition
p+ w1 is shown at the lower-half of the figure. The n-th columns show how the n-th
coordinate of the conditions look like. Thick bars represent the heights of domains
and ranges can be (note that they do not represent that domains and ranges are
initial segments of ordinals, and in fact, they may not). The solid arrows represents
maps of Cohen functions lying in the condition on the coordinates which are in
the support of p, dash-line arrows represent otherwise. We distinguish fy by a
dot-line arrow, since we 0 may or may not be in the support of p. The gray line in
the upper-half figure emphasizes the fact that py € Vi,. (p + 1)o is just pg, so it
remains unchanged. p; and ps are now conjugated by u. As a result, (p+ p); and
(p+ p)2 live in V,;, (which are emphasized by the upper gray line in the lower-half
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figure). f3 is (partially) overwritten by u. For n > 4, the measure-one set shrinks
to make sure that every n-object keeps information about p in a certain way.

We define an n-step extension recursively as follows: p is an n-step extension of
gforn>1ifp=(¢+ (o, -, ln—-2)) + ptn—1, under the condition that for i < n,
; is legitimate to perform a 1-step extension into ¢+ (uo, ... ,, pi—1). Define p < g
if p is a direct extension of some n-step extension of ¢ (n can be 0). The proof of
the following lemma is similar to the proof in Lemma [5.7] except that our forcing
is more complicated.

Lemma 6.4. (1) Let n < w. Let p be a condition such that n & supp(p) and
q <*p. Suppose u € AL and q+ p is valid. Then g+ p <* p+ (u [ dP).
(2) The ordering < is transitive.
(3) Suppose p is pure and q is a n-step extension of p at coordinates ko < -+ <
kn_1. Then there are u; € Azi fori <mn such that ¢ = p+ (lo, .-, fin—1)-
As a consequence, the order of the objects we use to extend p to q can be
commuted modulo squishing.

We explain the meaning of in Lemma by giving an example. Suppose ¢ is
a 3-step extension of p with 73, 70, and 71, respectively, where 75 € A} , 1o € Aijm,
T € AZTW’W, and kg < k1 < kg. Let us = 7o. Then one can check that for
1 =0,1, 7, is po o p; o /61 for some u; € AZ With some calculations, it is true
that ¢ = p+ (uo, 1, p2). In fact, for every permutation o of {ko, k1, k2}, there is a
unique way to perform three 1-step extensions of p where the 1-step extensions are
performed in the order of o. In our example, if 0(0) = 1,0(1) = 2, and 0(2) = 0,
one can see that ¢ = p + (u1, iz, i1 © fio © puy ).

Lemma 6.5. P is A\t -c.c.

Proof. Let {p® : a < ATT} be a collection of conditions in P. We first show that we
may assume without loss of generality that p, is pure for all . Since 2% < AT+,
we may shrink the set and assume that all p,s’ have the same supports, say a.
Suppose a # 0, let n = max(a). Hence, for a < A*+, p* | n € V,, . Shrink the
set so that p® | nare all the same for all a. As a consequence, we can assume p*
is pure for all a. For each n < w, d2” € [M]*. By GCH, we shrink the set so that
(dP" : o < \TT) forms a A-system. Let r be the root. Since || = A, we shrink the
collection so that f?° | r are all the same. Thus, f?° and f,{’ﬂ are all compatible
for n < w and o, B < ATT. Measure-one sets are compatible, hence, there is a pair
of compatible conditions.

O

If p € P and n € supp(p), then P/p factors into two posets Py = ((P/p) |
) (e n (f8)):m<ny a0d P1 = (P/p) \ n.

Lemma 6.6. Py is A\, (f2) T -c.c. If n+ 1 ¢ supp(p), (P1,<*) is kpi1-closed. If
n+1esupp(p), (P1,<*) is Apy1(fh, )T -closed.

Proof. If n+1 ¢ supp(p), then the part that makes P; has the lowest closure is the
n + 1th measure-one set: the <* relation on n-th coordinate is #-closed for some

0 > Knt1. The correspond ultrafilter is k,,1-complete, so (P, <*) is kyy1-closed.
O
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Lemma 6.7. Let p € P and n & supp(p). Let f' < fP with d' = dom(f’). Assume
that if n* = min(supp(p) \ (n + 1)) ezists, A" € enn+(fn+)(d), and if n* does not
exist, A’ € En(d'). Fiz f, for m > n such that f, < f2 and d,,, := dom(f,,) 2 ',
and if n < m < m/, then dom(f,,) C dom(f,,/). Suppose that for each pn € A’, there
is a condition t(un) <* (p+ (1 [ d2)) | n, and there is F() = {fm, Am(p) : m > n)
such that A, (p) is of measure-one with respect to d,,. Then there is a condition
q <* p such that
(1) f2 < f" and A% projects down to A’.
(2) forte AL withp=1[d,
o (g+7) =)
o (g+7)\ (n+1) <* ().

Proof. The proof is modified from Lemma [5.9] We will only point out key differ-
ences. Assume p is pure for simplicity. For m > n, let A, = ApcarAm (1), so Ay, €
E.(dom(fp,)). One can modify the proof of Lemma to construct ¢ [ (n + 1).
For m > n, define ¢, = (¢m, Bm) such that dom(g,,) = dom(f,,) U dom(f2?),
gm(y) = fm(y) if v € dom(f,,), otherwise, g.,,(v) = 0, By, € Ep,(dom(gy,)) and
By, projects down to a subset of A,, and A?,. FixT € A2 and p =7 [ d" and m > n.
Then (¢ + 7)m = (gm,Cm) where Cy,, C {x € A% : dom(7) Urge(r) C dom(x)}.
Clearly g < fm. For x € Cp, dom(p) = dom(r [ d') € dom(x | d'). Since
rge(pn) = rge(r [ d'), it is a subset of dom(x). Since d’ D A, rge(u) € dom(x [ d).
Since d' C d,, and x | dp € A, we have that x | dn € An(p). Hence,

(q+ T)m < (fony Am(p))-
[l

Theorem 6.8. P has the Prikry property.

Proof. Let b be a Boolean value. We will start by proving the Prikry property for
a pure condition p € P. Later, we will explain how to modify the proof for impure
conditions. Our goal is to build a <*-decreasing sequence (p" : n < w) such that
p? <* p and if ¢ < p, q decides b and max(supp(q)) = n, then p™ decides b. Then
we claim at the end of the proof that by letting p* to be a <*-lower bound of
(p"™ : n < w), then p* decides b. We give a convention for the proof. Let p be a
pure condition. If there is ¢ <* p such that ¢ decides b, then we are done. Suppose
not. Let B, = BE»(\, \). If f € B,, and p is an n-object with respect to dom(f),
then f & u € B,.
Construction of p°: Let

Qo = {{fn:n<w)e]],c,Bn| (dom(f,):n < w) is C-increasing }
where [],, ., B, is a full support product, and
Ro = {(f,7) € Bo X (P(g,:n>0), <*) : dom(f) C dom(f])},
where the first coordinate of 7 is (f7, A7). By adapting the proof in Theorem

[4:6] we find

(1) No < Hyp for some sufficiently large regular cardinal § > M/, such that
Ny is internally approachable in the way described as in Theorem

witnessed by a sequence of elementary submodels of length xg, |Ng| = A
and <" Ny C No. In addition, \, b, p, P € No, A, df C No, and for all n < w,
)‘?n € Ny

(2) (f9:n < w) which is (N, Qp)-generic, and (f2 :n < w) <g, (ff :n < w).



FORCING WITH OVERLAPPING SUPERCOMPACT EXTENDERS 27

(3) d3 = No N N).

The construction is similar to the explanation at the beginning of Theorem |4.6)
Let A% € E,,(d%) be a measure-one set projecting down to A? for all n. For p € A,
lu| < Ko, dom(p) C d2 and rge(u) C A, so p € Ny. For p € Af, define D, as the
collection of (f,7) € Ry such that dom(u) C dom(f) and if there are g < f @ p and
7 <* 7 such that (g)"7 decides b, then (f @ u)"7 decides b the same way. Let
7 : Ry — Qg be the natural projection and D), = w[D,,].

Claim 6.8.1. D,, is open dense below (f§)™(pn, : n > 0) and D, € Ny. As a
consequence, D;L is an open dense set and D;L € Np.

Proof (Claim [6.8.1)

It is easy to check that D, is open. D, is defined using Ry, p, and b, so
D, € Ny. It remains to show that D, is dense below (ff)"(p, : n > 0). Let
(f)"7 <r, ()" (pn : n > 0). By the density, assume dom(u) C dom(f). If there
are g < f @ p and 7 <* 7 such that (g)"7 decides b, let ¢’ be a function with
dom(g’) = dom(g) and ¢'(v) = f(v) for v € dom(f), otherwise ¢'(y) = ¢g(v), then

(g')~7" € D, and (¢/) "7 <g, ()7
B (Claim
By genericity, we have that (f) : n <w) € D). Find A (u) € E,(d}) for n > 0
such that (f$)™((f2, A%(n)) : n > 0) € D,. For n > 0, define (42)* = A% N
Byueay AL (). By Lemma .11} (A2)* € B,(d8). Let ¢° = (£8, A~ (£, (42)°) :
n > 0). For p € A3, n > 0, we have that A%OﬂL C {r € (AY)* : dom(p) Urge(u) C
dom(7)} € A% (u). Thus, we have the following property for ¢° (call it (x(¢%)):

(%(q°)) For p € A, if there are f < (¢° + p)o (which is f§ @ u), and
7 <* (¢° + u) \ 1 such that (f)"7 decides b, then ¢° + u decides b the same way.

Let

Ao ={ne AY:3F < [0 0 pEF <" (@ + )\ 1((F) 71 b))}
Av={pe AQ\ Ao 3f < [0 uEF < (@ + W) \ L((f)"FIF -b))}
Ay =AY\ (Ao U Ay).

Note that p € Ag implies that ¢° + p IF b, and p € A, implies that ¢" + u IF —b.
There exists unique @ = {0, 1,2} such that A4; is of measure-one, call it ig. Let

P’ = (f8, Ai) " {(fR, (47)*) :n > 0).

We now show that if there is ¢ < p° with supp(q) = {0} and ¢ decides b, then
p° decides b. Let ¢ be such a witness, and without loss of generality, suppose that
g IFband ¢ <* p + pu for some p € ASO. Then f§ < f8 @ p = (¢° + p)o and
g\1<* (P°+p)\ 1= (¢° + p) \ 1. By x(q°), we have that ¢° + pI- b and p € Ap.
This means i = 0. For every extension r of p® with 0 € supp(r), we have r < p+ '
for some p' € Ag. With the property %(¢q°), we have that ¢° + p/ IF b, and hence,
r I b. By the density, p° IF b.

Construction of p™+!:

Let

Qi1 = {{(fn:n>m) €[],s,,Bn | (dom(f,) : n > m) is C-increasing}
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where [],,-,, B, is a full support product, and

Rm-‘rl = {(f)F) S IBm-l—l X (P<En:n>m+l>7 S*) . dOIIl(f) g dom(f;;;+2)}a

where the first coordinate of 7 is (f], o, A}, o). By adapting the proof in The-
orem we find

(1) Npy1 < Hp for some sufficiently large regular cardinal 6 > 5\2) such that Ny
is internally approachable in a way described as in Theorem witnessed
by a sequence of elementary submodels of length £m41, [Nmt1| = A and
BNy © Nppgr. Also, A, b, p™ P € Nywyr, A, 201 € Nyg, and for
all n. > m, A, € Nyia

(2) (fm+:n > m) whichis (Np1, Qm1)-generic, and (f7+ :n > m) <q,..,
(fP" :n >m).

(3) drt! = dom(f"*!) = Npyr NN, for all n > m. In particular, djnt} C
Nm+1-

The construction is similar to the explanation at the beginning of Theorem
Let A7 € B, (d7+1) be a measure-one set projecting down to A2™ for all n > m.
Since for p € Amﬂ, || < Kma1, dom(u) C dgﬂ and rge(u) C A, 80 p € Nypaq-
Fix pu € Aﬁﬂ Let Priy1 = Pre,, iy (u)ym<my- Note that [Py | < Kmpr. Let
(ta : @ < |Pm41,u]) be an enumeration in N4 of conditions in P, 41 ,. Define
D,, as the collection of (f,#) € R,,41 such that dom(p) C dom(f) and for each
a < |Ppyq1,,l, if there are a function g < f @ p and # <* # such that t(g) "7
decides b, then ¢t (f @ u) 7 decides b the same way. Let 7 : Ry;,41 — Q41 be the
natural projection and D}, = 7[D,,].

m

Claim 6.8.2. D,, is open dense below (f¥ . )~ (p™ :n>m-+1) and D, € Ny41.

m
As a consequence, D; is an open dense set and DL € Nipy1-

Proof Claim (6.8.2))

It is easy to check that D, is open. D, is defined using R, 41, p, and b, so

d

D,, € Nyp41. It remains to show that D, is dense below (fp:_ Y (pp i >m+1).

m
Let (f) "7 <r,.: ( fﬂl)’%pn :n > m+1). By density, assume dom(u) C dom(f).
Build ((frm+1,0 Tm+1,a) : & < [Py 4]) as follows:
(1) fong1,0=fand Fpy10 =7
(2) If ais limit, let (frnt1,0 Pm+ti1,a) be a Ry, p1-lower bound of {((frm41,8, Tm+1,8)
B < a).
(3) For a < |Ppyy1,p], ask whether there are g < fr41,0 ® p and 7 <* 741 o
such that t (g)"7 decides b. If the answer is positive, let fp,41,0 be
a function with dom(fy,4+1,0) = dom(g), fm+1,a(¥) = fmt1,(y) f v €
dom(frm+1,a), otherwise fry1.a41(7) = g(7), and let 711 a41 = 7. If the
answer is negative, let fi, 41,041 = fim+1,0 a0d Trt1 041 = Tmti,a-

The argument at the successor stages is similar to the argument in Claim [4.6.1}
The construction proceeds to the end since Ry, 11 18 Ky, 1-closed. Let g’ = fm+17|]p
and 7 = T 1, p Then (¢')"7 € D, and (¢') "7 <g,,,, (g9)" 7

EClaim

Thus, by genericity, we have that (f7"*' : n > m) € D). Find A7 (u) €

E,(dm*1) for n > m + 1 such that (f7 )~ ((fm+, A (0)) :n > m+1) € D,,.

m+1,p

m-%-lyul'

m

For n > m+1, let (Am+)* = Am+ln AMGAZﬁA?‘H(u). By Lemma
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(ARt € Bn(dpth). Let g™ = p™ [ (m+1)7 (i Anin) = (it (Ap+h))
n>m+1). For p € ATl n>m+1, we have that AT C {7 e (AL
dom(p) Urge(u) C dom(r)} € A™*1(p). Thus, we have the following property for

g™ (call it (x(g™1)):

(x(g™*1)): For pe ATl for t € Ppyiy y, if there are f < (g™ + 1)1
(which is fF} @ p), and 7 <* (¢™+ + 1) \ (m 4 2)) such that ¢ (f) "7 decides b,
then t~ (g™ + ) \ (m + 1) decides b the same way.

Fix p € Amﬁ Let G be the canonical name for the generic object for P, By

the induction hypothesis, find ¢(x) <* p™ | (m + 1) which decides the following
sentence:

©o=3te Gt (¢ +p)\ (m+1) || b).
Let

={pe Al i t(p) k3t e G (¢ +p)\ (m+1)IFb)}
A ={pe AT\ Ao t(p) IF 3t € GE (g™ + p) \ (m +1) IF =b)}
Ay = Azﬁ (Ag U Ay).

There exists unique ¢ € {0, 1,2} such that A; is of measure-one. Let i,,+1 be as
such. We now apply Lemma [6.7] - to the following setting: the “p” in Lemma [6.7] is
Pm =t L f = fIL A= Ay Hn) and F ) = (£ AT ) s>
m + 1) for each p € A; as described earlier, to find p™*! <* p™ such that

(1) fmwrl < fmtl and Aan projects down to A;

Gl
(2) for 7 € Am+1 with p =7 [ dii],
o (P AT) I (m A1) =t(p).
o (P +7)\ (m+2) < ().
We now show that if there is ¢ < p™*! with max(supp(q)) = m+1 and ¢ decides
b, then p™*! decides b the same way ¢ does. Let ¢ < p™*! be a condition deciding
b and max(supp(q)) = m + 1. Without loss of generality, assume ¢ I+ b. Suppose

Tm+1

g < p™*tl + 7 for some T € Am:1 Let u =711 dzﬁ By the property *(¢™*1),
we have that ¢ | (m 4+ 1)"(¢™™ + u) \ (m + 1) I b. Note that ¢ | (m +1) <
(p™Tt 4+ 71) | (m+1) = t(n). We claim that i, 1 = 0. Suppose i,,1 = 1 (the case
im+1 = 2 is similar). Let G' be generic containing ¢ [ (m -+ 1), hence, containing
t(u). Let t € G be such that t~ (g™ + u) | (m + 1) IF =b. We may assume
t<q | (m+1),but then ¢~ (¢ + u) \ (m + 1) IF b, b, which is a contradiction.
Thus, 4,41 = 0. A similar proof shows that already #(u) ™ (¢™ " +p) \ (m+1) IF b,
and hence, p™*! 47 IF b. Since i,,41 = 0, for every 7/ € AP J: with o/ =7 | drm"ﬂ,
W € Ag. A similar argument shows that p™*! + 7/ I b. By a density argument,

p™ L I- b. We finish the argument for p™*!. Recall that p* is a <*-lower bound of

(p" ‘n < w).
Claim 6.8.3. p* <* p and p* satisfies the Prikry property.

Proof (Claim [6.8.3))
To show that there is a condition ¢ <* p* which decides b, let ¢ < p* such that
q decides b. If ¢ <* p*, then ¢ <* p, but this contradicts our assumption that there
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is no direction extension of p deciding b. Hence, ¢ is impure, let n = max(supp(p)).
Since ¢ < p™, by our construction of p”, we have that p™ decides b the same way
q does. Since p* <* p™, p* also decides b, which is a contradiction. Hence, we are

done.
H(Claim
We finished the proof of the Prikry property for pure conditions. We now give an
outline of the proof when we start with an impure condition p with a focus on the
modifications. Assume that p is impure. We will give an outline on how to construct
a <*-decreasing sequence (p™ : m < w) satisfying the properties described as in the
proof starting with a pure condition. The construction will split into three cases:
p™ for m ¢ supp(p) such that supp(p) \ (m + 1) # 0, p™ for m € supp(p) and p™
for m > max(supp(p)).
p™ for m ¢ supp(p) which supp(p) \ (m + 1) is nonempty: the construction
is similar as in the pure case, except that the parameters change. Let m* =
min(supp(p)\(m—l—l)), Am* = )\m* (fgL*) Forn € [m7 m*)v let Ail,'ﬂl* = A%,m* (f'f’L*)’

and B, - = B ) L N,

n,m* n,m*
Let

Qo ={finzme [ Bom

nefm,m*)

(dom(fy,) : n € [m,m")) is C -increasing},

R ={(f,7) € By,m» X (}P’(en,m*(ffjl*):ne[mﬂ,m*)w <) |
dom(f) € dom(fy,11)},

Sm =((P/p) \ m*,<")

where the first coordinate of 7 appearing in R,,, has the first coordinate f7, 4
Recall that s« (f2.) ,Am+ are regular, and greater than &,,-. Note that Q,, is A" .-
closed Let N,, < Hy for some sufficiently large regular cardinal § > )/, containing
“enough” information, such that |N,,| = A« and <7 N,, C N,,. Let (f™ :n €
[m, m*))"7 be (Nps1,Qm x S )-generic below (f27 " :n € [m,m*))"p™=1\ m*,
where p~! = p. Let d”" = dom(f™). Let A" € ey = (f2.)(d™) be a measure-one
set projecting down to Aﬁm_l for all n € [m,m*). Fix u € A™, so p € N,,. Let
]f"m’u = P, .(u)m<m)- Define Du as the collection of (f,7o,71) € Ry, x S, such
that dom(p) € dom(f) and for each t € Pp,11 ,, if there are a function g < f @ p
and 7, <* 7o, ™ <* 7 such that t™(g) "7, "7 decides b, then t™(f & pu) "7 "7
decides b the same way. Let 7 : R,, x S,, = Q,, X S,, be the natural projection
and D/, = 7[D,]. One can check that D, is an open dense set in N,.

Thus, we have that (f7" : n € [m,m*))"7 € D,,. Find A7 (1) € enm=(fh-)(d]")
for n € [m 4 1,m*) such that (f7")~((f*, Ap(p)) :n € [m+1,pu*)) "7 € D,. For
n € [m+1,m"), let (AT)* = A7 N Ayean A7 (p). By Lemma [B.11} (A7 +1)* €
enme (fime)(d?). Let g™ = p™ =1 [m™(fi2, ATH™ (£, (A)) s n > m+ 1) 77 (if
m = 0 the first term p"™~! does not exist). Thus, we have the maximizing property
for ¢™ (same as in x(¢™) in the pure case). If m = 0, shrink the set A7’ so that
every object in A" behaves the same, and then we can form p™ by just ¢ with
the first shrunk measure-one set. If m > 0, for u € A7, find t(u) € P, , which is a
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direct extension of (¢™ + ) [ m deciding certain statement. Shrink the measure-
one set A so that for € A", t(u) decides the statement in the same direction.
Use Lemma [6.7] to form p™.
p™ for m € supp(p): Assume m > 0 (the case m = 0 is simpler). Let P,, =

Ple, m(ro)ynamy- Let 6 = |P,|, then 6 < k,,. Enumerate the conditions in P,,, as
(to : a < 6). Build a <*-decreasing sequence (7, : @ < ) in (P/p) \ m such that

(1) 7o =pm 1\ m.

(2) if @ <0 is a limit ordinal, let 7, be a <*-lower bound of (73 : § < «).

(3) for a < 0, if 7, is built, and there is 7 <* 7, such that ¢, 7 decides b, let

Tw+1 be such a 7, otherwise 7411 = 7y.

The construction proceeds to the 6-th stage, since ((P/p) \ m, <*) is &, -closed.

Let 7™ = 7. Let G be the canonical name of a generic object for P,,. Let t <*
m—1

P [ m be deciding the following statement:
o=3t' e GH'~F| b).

By extending ¢ regarding the direct extension if necessary, assume that either
tIF 3t e G FIF D), tIF 3t € G 7 IF —b), or t I+ Ht' € G(t' "7 Ik b). We finish
the construction by letting p™ =t r.

p™ for m > max(supp(p)): the construction is exactly the same as for the
construction of p™ for the pure case.

We finish the proof of Theorem [6.8]

O

Theorem 6.9. P has the strong Prikry property. Namely, for each dense open set
D C P and p € P, there is a condition ¢ <* p and a finite subset a of w (a can be
empty) such that

(1) ansupp(p) = 0.

(2) every |a|-step extension of q using objects from {A% :n € a} lies in D.

Proof. (Sketch) The proof has the same structure as in the proof of the Prikry
property. We only emphasize the key different ingredients from the proof of the
Prikry property. For more details, consult the proof of the Prikry property. We
will also only prove for pure conditions. The proof for arbitrary conditions can be
modified as in the proof of the Prikry property for impure conditions.

Let p be a pure condition. Fix an open dense set D. We will build a <*-
decreasing sequence (p™ : m < w), such that if there is ¢ < p™ with ¢ € D,
max(supp(q)) = m such that for r < ¢™ with » € D, and max(supp(r)) = m,
we have supp(q) < supp(r) in the usual well-ordering in [OR]<“, then for every

m

i€ IT A2, we have p™ + i € D. It will then be routine to check that a
n€supp(q)
lower bound of the sequence (p™ : m < w) will satisfy the condition for the strong
Prikry property. Let B,, = BE=(\, \)).
Construction of p°: Let

Qo ={{fn:n<w) €]],ce, Bn | (dom(fy) : n < w) is C-increasing}
where [],,_,, B, is a full support product, and

RO = {(fa 7_3) € ]BO X (]P)(En:n>0>a S*) : dOIIl(f) - dom(f{)}a
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where f] is the first Cohen part of 7. Fix a sufficiently large regular cardinal 6.
Build an elementary submodel Ny < Hy of size A which is the union of an inter-
nally approachable chain of length kg, Ny is closed under <kg-sequences containing
enough information. Let (f2 : n < w) be (No, Qq)-generic, and (f2 :n < w) < (fE:
n < w). Let d2 = dom(f?). Let AY € E,(d%) be a measure-one set projecting
down to AP for all n.

Fix p € AJ. Define D,, as the collection of (f,7) € Ry such that dom(u) C
dom(f), and if there is (g, ) <g, (f @ u,7) such that (¢) "7 € D, then (fdu) "7 €
D. Let m : Ry — Qo be the natural projection. Let D, = 7w[D,]. Then D,
is a dense open subset of Qo and is in No. Hence, (f) : n € w) € D). Let
(A%(p) : n > 0) be such that (f§)~((f2, A%(u) : n > 0) € D,,. For n > 0, let
(AD)" = AR N A eagAn (). Let ¢° = (f5, AG) ™ ((fa, (A7)") : m > 0). For p € A,
n > 0, we have that A7+ C {7 € (A%)* : dom(u) Urge(n) C dom(r)} C A% (p).
Thus, we have the following property for ¢° (call it (x(¢°)):

(*(g%)) for u € A, if there are f < (¢° + p)o (which is f§ @ u), and
7 <* (¢ + p) \ 1 such that (f)~# € D, then ¢° + u € D.

Shrink A9 to a measure-one set B so that

(1) either for every u € A9, ¢° + pu € D,
(2) or for every p e A9, ¢° +u & D.

From ¢, shrink the measure-one set A) to B and call the new condition p°. Here
is the property of p°: if there is ¢ < p° such that supp(q) = {0} and ¢ € D, then
0
for every p € A5, p® + € D.
Construction of p™*!: Suppose p™ is constructed. Let

Qi1 = {{(fn:n>m) €[],s,,Bn | (dom(f,) : n > m) is C-increasing }

and,

Ror1 = {(f;7) € Biny1 X (P, m>m1y, <F) : dom(f) € dom(f}, o)},

where the first coordinate of 7is (f], 1o, A, o).

Let N,,+1 be the union of an internally approachable chain of elementary sub-
structure of Hy for sufficiently large regular 6, the length of the chain is k41,
where N,,,11 contains “enough” information, |Np,41| = A, <"+ N1 © Ny
Let (fm*1:n > m) be (Npyt1, Qm1)-generic, and (£ :n >m) <q, ., (f2"
n > m). Let d"T! = dom(f™*1). Let A™*T! € E,,(d™T!) be a measure-one set pro-
jecting down to A2 for all n > m. Fix p € A%ﬂ Let Prti,n = Pley i ()m<m) -
Define D,, as the collection of (f,7) € Ry,41 such that dom(p) C dom(f), and for
each t € P41, if there is (g,7) <w,,., (f ® p,7) such that ¢~ (g)" 7" € D, then
t>(feow e D. Let m: Ryt1 — Qi1 be the natural projection, and D), =
n[D,]. The set D, is a dense, open subset of R,,11, and D, € Ny, 1. Hence, we
have (fi*+!:n > m) € D). Let Am*1(1) be such that (f50) 7~ ((fm+t, Am+t(p)) -

n>m+1) € D, Forn>m+1,let (A"TH)* = Amtln AMGAZi}A”mH('u)' Let
gmtt = (" 1 (m+ D)L AR T (ARTYT) s> mt 1), For

pe At and no > m+ 1, AT € A™L(). Thus, we have the following

m

property called (x(g™*1)):
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(x(g™*1)): For p€ ANt and t € Ppyyq , if there are g < £ @ p and
7 <* (@™ + p) \ (m + 2) such that t(g) "7 € D, then
(g™ +p)\ (m+1) € D.

Fix p e Azﬂ Outside Nypy1, let Du be the collection of ¢t € Py, 11, such that
either

(@™ +p) \ (m+1)) € D,

or for all g < fg;fll &, 7 < (¢ 4 )\ (4 2),

t™ (g7 ¢ D.

We can use the property of D, to show that Du is open dense (in fact, D# =
Ppt1,4)- Use the induction hypothesis to find t(u) <* (¢™! + p) | (m + 1), with
the least [w]<“-element in the lexicographic order ﬁ” = {no,...,n} (u)—l} such that
ny << nk( y_1> such that for every 7€ ] AN we have t(p) + 7 € D,,.

nemnr

For each y € A"11, define F, :An(ff) xAt(”) — 2by Fu(70,- - s Th(u)—1) =
0 Mo -1

1 if and only if
() + (1055 Th(uy—1)) (@ + )\ (m+1) € D.

We have a measure one set Bt(” C A ) for all i < k(w) such that F | Bfl(f) X
0

;

Bfl(f ) is constant. Shrink the measure one sets A (,’f ), . ,A;(ff ) inside t(u)
k(p)—1 k(p)—1
to Bfl(,fi ),...,Bfl(f )| respectively. Call the resulting condition t*(p). By the
0 k(p)—1

shrinking of measure one sets in ¢(u), we have arranged that
(S1) either (¢* (1) + (05 - - -, Th(uy—1)) " (@™ + 1) \ (m+1) € D for all 7 in the

product of measure-one sets Bt(“ )

(S2) or for all 7in the product of measure-one sets B (f), there areno g < fi't'®

p, and 7 <* (@™ + p) \ (m + 2) such that (¢* (1) + (7o, Th(u—1)) —
<9>””€ D.

Shrink Afn 1 " further so that every p satisfies [(S1)] or every p satisfies [(S2)

every  satisfies|(S1) - )} shrink further so that there is a sequence i,,+1 such that for

t t
<n0(lt),. nk((l;)) ) = g

Observe that t*(u) <* (p™ + (u | dom( erl))) I (m+1). Use Lemma
to integrate these components (with t*( ), not t(u)) together to form a condition

i1 m41
p™tl <* p™. Hence, ffl < fre, AmJrl projects down to A7'T1, and T € Aerl

with u = 7 | dom(ffsrl), we have that (p™*! +7) | (m + 1) = t*(u) and for
(Pt + 1)\ (m+1) <* (¢™ + )\ (m + 1). This completes the construction
of p™*1. Here is what we have: if ¢ is an extension of p™*! such that supp(q) is
the least in the lexicographic order in [w]<*, max(supp(q)) = m + 1, and q € D,
then every extension ¢’ of p™*! with supp(q’) = supp(q) is in D. Now let p* be a
<*-lower bound of (p™ : n < w).

every p € Ay, ity =

Claim 6.9.1. p* satisfies the strong Prikry property.
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Proof (Claim

(sketch) Let ¢ < p* with ¢ € D. Assume ¢ is not pure with the least supp(q)
in the lexicographic order in [w]<*, meaning if there is r < p* with » € D, then
supp(q) < supp(r). Enumerate supp(q) in increasing order as ng < -+ < ng_1.
If ng_1 = 0, then the proof is easy. Assume ni_; = m + 1. Using the notations

from the construction of p™*!, we have that for every 7 € A?, 1T dzﬂ satisfies

the property [(S1), and 7i,,+1 = (ng,...,ng—2). By the way we shrank Azﬂ, for
every ji € 11 AfLmH, we have p™*! + ji € D. This implies that for
NERpm1U{m+1}

e Hneﬁmﬂu{mﬂ} A{’:, p* + i € D. Hence, the proof is done.

H(Claim

O

This completes the proof of Theorem

7. FORCING WITH ARBITRARILY MANY EXTENDERS

We state without proofs in this section. All the proofs are close to the proofs
in Section [6] The structure of the proof of the Prikry property is almost the same
as the proof in Section [6} for each condition p and a Boolean value b, build a <*-
decreasing sequence (p® : @ < n). The construction of p® for successor « is similar
to the construction of p™*! in Theorem If « is limit, we only take p® as a
<*-lower bound of (p” : 3 < a). Assume 1 > 0 is an arbitrary ordinal and the
result from Theorem [2.14] holds for 7.

Definition 7.1. A forcing P (g, .q<y) consists of conditions p, and a support of p,
which is supp(p) € [7]<%, of the form p = (p, : @ < ), where

Do = (fa) if o € supp(p),
“ (fa,An)  otherwise,

and for each o < 1 such that supp(p) \ (a+1) # 0, let o* = min(supp(p) \ (a+1)),
then the following hold:

(1) for each o where a* does not exist,
e if & € supp(p) (which is exactly when o = max(supp(p))), then
fo € BE<(M M), dy := dom(f,) is an a-domain with respect to
E,, and if a > 0, fo(ka) is c-reflected for the sequence (Eg : 8 €
[max{0, max(supp(p) N )}, 2))
o if a & supp(p) (which is exactly when a > max(supp(p)),
— fa € BE(\, ).
— Let d,, = dom(f,) is an a-domain with respect to E,, and A, €
E,(da).
(2) for each av where a* exist, then
o if @ € supp(p) (which is exactly when a = max(supp(p) N a*))),
fo € Beaar Far) (N e (for ), )\f;,a* (far)), do = dom(f,) is an a-domain
with respect to eq o+ (for), and if a > 0, then f,(kq) is a-reflected
for the sequence (6%@*(]00(*) : B € [max{0, max(supp(p) N a)}, ®)).
Recall that Ao+ (far) = Sar(far(Kar)) where jg_.(Sox)(Kar) = A,
Nyar (far) = th(far (Kar)) where jg . (t5.)(kas) = N, and N, =
jEQ ()\)a and €a,a* (foz*) = hg* (fa* (K:oz*))
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e if a & supp(p) (which is exactly when o € (max(supp(p) N a*),a*)
and max(@) = —1),
— fo € Beaor U ) (N (for ), Ai’a*(fa*)), and d, := dom(fy) is an
a-domain with respect to eq o (for)-
— vge(fa | Jor oo (o) () €
— Ay € eqar (for)(da).
(3) For max(supp(p)) < <a <n, dg C da.
(4) If B < n is such that 8* exists, then for each § < o < 8%, dg C dq.
(5) if & < n is limit and « € supp(p), then
e if a* does not exist, then f,(A) = s4(fa(ka)), and for 8 < a, fa()\%) =
t3(fa(ka)). Also, fo(M,) = u2(fa(ka)), which is greater than t2 (fa (ks ))
for all B < a (recall jg, (u)(ka) = M, = SUPB<Q()\J§)7 where )\Jé =
o if o* exists, then fo( Ao+ (far)) = Sa(fa(ka)), and for 8 < fa(/\%’a*) =
t2 (falka)). Also, fa(;\i’a*) = u%(fa(ka)), which is greater than
t3(fo(ka)) for all B < a.

A condition p is pure if supp(p) = 0. Otherwise, p is said to be impure.

Definition 7.2. For p,q € P. We say that p is a direct extension of g, denoted by
p<tqif

(1) supp(p) = supp(q).

(2) forall a < n, f2 < f4.

(3) for a & supp(p), A% | df, C AL.

Notice that if p <* ¢, then for a € supp(p), f2(ka) = fi(kq), so all parameters
defined from fZ(k,) are the same as those defined from f2(k,).

Definition 7.3. Let p € Pand o ¢ supp(p). Let u € A2 be (pg : 8 € [max(supp(p)N
a), &))-squishable. The one-step extension of p by p is the condition ¢, denoted by
p + p, such that

(1) supp(q) = supp(p) U {a}.

(2) for f < max(supp(p) N &), g3 = pgs.

(3) if a* = min(supp(p) \ (a + 1)) exists, then for 3 € (a,a*), g5 = (f§, Bs)
where Bg = {7 € A} : 7 is (f%, A%)-squishable, and dom(u) U rge(n) C
dom(7)}, and for 8 > a*, qg = pg.

(4) if @* does not exist, then for 8 > «, g5 = (f}, Bg) where Bg = {1 € A} : 7
is (fP, AP)-squishable and dom(u) Urge(u) C dom(r)}.

(5) f1= 2 & p.

(6) for 8 € [max(supp(p) N ), a), f§ = po fhop " and Af = po (Af),op™"

We define an n-step extension recursively as follows: p is an n-step extension of
gforn>1ifp=(¢+ (o, - ,ln-2)) + ftn—1, under the condition that for i < n,
i is legitimate to perform a 1-step extension into ¢+ (g, - ,, ti—1). Define p < ¢
if p is a direct extension of some n-step extension of ¢ (n can be 0).

Lemma 7.4. (1) Let a < . Let p be a condition such that o & supp(p) and
q <*p. Suppose p € AL, g+ p is valid. Then ¢+ p <*p+ (p ] dP).
(2) The ordering < is transitive.
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(8) Suppose p is pure and q is a n-step extension of p at coordinates ag < -+ <
an—1. Then there are p; € AL, fori <n such that ¢ = p+ (uo, .-, ftn—1)-
As a consequence, the order of the objects we use to extend p to q can be
commuted modulo squishing.

Lemma 7.5. P is A\t -c.c.

If p € P and a € supp(p), then P/p factors into two posets Py = ((P/p) |
) (ep.a(f2)):B<a) and P1 = (P/p) \ a.

Lemma 7.6. Py is \o(f2)T T -c.c. If a« +1 & supp(p), (P1,<*) is kat1-closed. If
a+1 e supp(p), (P, <*) is Aay1(fh )T -closed.

Lemma 7.7. Let p € P and « & supp(p). Let [ < fP2 with d' = dom(f’). Assume
that if o = min(supp(p) \ (@ + 1)) ezists, A’ € eq.a*(for)(d'), and if a* does not
exist, A’ € E,(d'). Fiz fg for 8 > a such that fg < fg and dg := dom(fz) D d',
and if o < B < B, dom(fg) C dom(fs/). Suppose that for each € A, there is a
condition t(p) <* (p+ (| d)) | @, and there is 7(pn) = (fg, Ag(u) : B > @) such
that Ag(u) is of measure-one with respect to dom(fz). Then there is a condition
q <* p such that

(1) f2 < f" and A% projects down to A’.

(2) for T e AL with u =71 | A, we have that
° (¢+7) [a=t(n)
o (g+7)\(a+1) <" 7(p).

Theorem 7.8. P has the Prikry property.

Theorem 7.9. P has the strong Prikry property. Namely, for each dense open set
D C P and p € P, there is a condition ¢ <* p and a finite subset a of  (a can be
empty) such that

(1) ansupp(p) = 0.
(2) every |al-step extension of p using objects from {AL : « € a} lies in D.

8. CARDINAL PRESERVATION

Let  be a limit ordinal and P = P(g_.q<y)- In this section we determine the
cardinals which are preserved and collapsed. Note that P is A™T-c.c., so every
cardinal above and including AT is preserved.

Theorem 8.1. When forcing with P, cardinals below and including K, which are
not in the intervals (Ra, ko) for a < n limit are preserved.

Proof. First, note that (P, <*) is kg-closed, so every cardinal below and including
Ko is preserved. We now consider the cardinals in the interval (kq,kq+1]. Let
p € P be such that o, + 1 € supp(p). Then P/p factors into 3 posets, namely
P

]P)O = (]P)/p) r o = P<9/3,a(f£):5<a>7 ]P)l = (P/p)(a) = Bea,a+1(fa+1)(Aa_‘rl(fg_‘rl)’
Ai7a+1(f£+l)), and Py = P(g,.5>0+1)- Po is Ao (fB) T -cc. and Ao (f2)TF < Ka-
Py is Aag1(fh,1)-closed, and )\a+1(f§+1)+—c.c., so Py preserves all cardinals, and
(Pg, <*) is Kq41-closed. Hence, all cardinals in the interval (kq, Kat1] are preserved.
For a < n limit, Ko = Supg., K, S0 Kq s preserved.

O
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To understand the cardinal behaviors in the interval (R, ko) for a < 7 limit, as
well as the interval (,, ATT), let’s simplify by considering the case where 7 = w
first, since this will be used to describe general cases.

Let n = w, namely P = P(g.n<.)- We analyze the V-cardinals in the interval
(Fw,AT) in a generic extension. Fix a cardinal v € (&, A™) with cf(y) > &,. Then
for all n, in M, cf(supjg, [Y]) = cf(y) < A < jg, (k,) < cf(jg, (7)), which implies
sup ji, [7] < je, (7). Set v = sup(jg,[7]) and 7, = 47#» (which is jg,(v))). In
V[G], define H, whose domain is w as follows: if there is a condition p € G such
that max(supp(p)) = n and v, € dom(fZ), define H,(n) = f2(v,). Otherwise, let
H.,(n) = 0. By genericity, H, is well-defined.

Lemma 8.2. When forcing with P, .,<.y, H is an w-cofinal sequence in .

Proof. Assume v < X\ (the case v = X is similar). Let v < v. Define v,, = v9&n.
Define D,, as the collection of p € P such that
(1) there is ng < w such that supp(p) C no.
(2) for n > ny,
® Up,Vn,Yn € db.
o for pn € Ab, v, v, Yn € dom(p), p(vy) = v and p(yn) = 7.

Clearly D, is dense. Let p € D, NG. For ¢ < p with max(supp(q)) = n >
ng, ¢ € G, we have that ¢ < p + p for some p € AP. Hence, vy, Vn, Jn € di,
v=flvn) = puvn) < plyn) = fl(v) and f(yn) = pu(ym) < p(n) = 7. Hence,
H,(n) € (v,7). Since v <+ is arbitrary, we are done.

([l

We see that for every V-cardinal ~ in the interval (K., AT) with cf(y) > Ko,
V[G] adds an w-cofinal sequence of 7. Recall that %, is preserved. We now explain
that if v € (R, AT), v is collapsed to have cardinal &,. Otherwise, let v be the
least in the interval which is preserved. Then v = (&})VI[C]. If 4 is a cardinal with

cfV () > R, then cfV¢(y) = w, which is a contradiction. If c¢f(y) < R, then
VI (y) < Ry < (7})VIC], contradicting the fact that v = (&})VIC].

Corollary 8.3. When forcing with P (g, ..<., all cardinals in the interval (K, AH)
are collapsed.

Lemma 8.4. When forcing with P (g, .n<w), AT is preserved.

Proof. Suppose not. Since all cardinals in the interval (&,,, A\*) are collapsed, (A\*)V
is collapsed to have size k.. Then in V[G], let £ = cf AT < &,,. Choose n < w such
that £ < k,. Extend p so that n € supp(p). Break p into p [ n and p \ n. Since
p I nliesin Py (ry.mepny Which is A, (fF)-.c.c., so AT is collapsed in the forcing
in which p \ n lives (which is (P/p) \ n). Note that (P/p) \ n, <*) is k,-closed.

In V, let {%; : i < £} be a sequence of names, forced by p \ n to be a cofinal
sequence in AT. Build a sequence of conditions {p; : i < £} such that py = p \ n,
{p; 1 i < &} is <*-decreasing, and p,; satisfies Lemma for D, ={qgeP\n:q
decides the value of 4;}.

Set 7 to be a <*-lower bound of {p; : i < £} in P\ n. Since each measure-one set
has size at most \, for each i < &, A; = {8 : 3’ < r,r’ I+ 4 = B} has size at most
\. Set B; = sup A;, and § = sup f;. Then 7 - sup{4; : i < €} < B and g < (A1)Y,

i<
which is a contradiction. ‘
[
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We now consider the case n > w is limit. For a < n limit and p € G with
a € supp(p) and Ay = Ao (fP), the forcing P, = (P/p) | « is equivalent to the
forcing defined from a sequence of extenders with shorter length Pr.,  (r7).5<a)-
We can generalize the proofs of Lemma Corollary and Lemma [8.4]in a
similar fashion to show the following:

Theorem 8.5. Assume P = P(g_.qcpyy and n > w is regular. For o < n limit,
let Ao = Aa(f2) for some p € G. Then in the interval (Ro,Kq), all cardinals in
(Fays AY) are collapsed, cardinals in the interval [\, ko) are preserved. In par-
ticular, AD)Y = (RDVIC. For v € (Ra,AL) with cf¥'(y) > Rq, we have that
cfVICl(y) = cf(a). In addition, all cardinals in the intervals (., \*) are collapsed,
and X* is preserved, hence, (A\T)V = (7)VIC. For~y € (R, A*) with cf¥ (v) > Ry,
we have that cf"[¢) (v) = n. Other V -cardinals which were not mentioned are pre-
served.

9. BLOWING UP POWER SETS

We now show that forcing with P will add [M| new subsets of &, (recall that
5\% = SUP,<, JjE,(A) and K, = sup,., Ke). Lemma will be used to obtain
a condition in the generic extension that can be used to define scales (the formal
definition of scales is in Section. The technical conditions in the lemma ascertain

that the scales will be well-defined.

Lemma 9.1. Let 8 < n be a limit ordinal. Let p® be a condition such that
(1) if g <ﬂ 7, then we require thatﬂﬂ € supp(p?), we let \g = )\g(fgﬂ), /\i,ﬂ =
t5(f5 (ks)) anflﬂg = ug(fg (k) (recall that jp,(t5)(ks) = N, and
jE[—} (ug)("{ﬁ) = )‘i% = Supa<ﬂv>\]o¢)’ _ _
(2) if B=mn, then let \g =\, X, 5 = N,, and 05 = N),.

Fiz v € [Rg,05). We also assume that p° satisfies the following: there is & < (3
with supp(p)NB C @, v € dgﬁ and for o’ > a+1 and pu € Agf, we have v € dom(p)
and p(y) < Je, e (w (k) for all v € [a+ 1,a'] (here jer o (u)(Ky,) = Ky). Fiz
a € [a,B). Let D be the collection of ¢ < p” such that

(1) o € supp(q).
(2) If we enumerate (supp(q) N B) \ « in decreasing order as ag > -+ > ap_1,
then

(a) k>1and a1 =« and ag—o = a+ 1.

(b) v € dom(fg ). Furthermore, let (v;); be the sequence of ordinals de-
fined inductively by setting yo = v and i1 = f.(vi) for as long as
v: € dom(f2)), then (7;); reaches a stage where y_1 is defined, and
V-1 € dom(fd).

(c) let (vi); be as in (2V), then for i < k —2, we have that viy1 <
jea>+1,a>(fg,-)(/€o‘i+1)' If f& is satisfies the condition in this item, we
say that f&. is sensible.

(d) let € € (5 (a+2)). If€ > ao, then for p € AL 50, m € dom(y)
and j1(70) < Jeo, g (1) (Far) If i € [0, k—2) is the least such that § < a,
then for p € Ag, Yit1, YVitz € dom(u) and p(yit1) < jeai+1,ai(u)(”ai+1)'
If f1. is satisfies the condition in this item, we say that fl. is sensible.
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Then D is open dense below p°.
Proof. (Lemma [9.1))

We prove for the case 5 = 7. The case § < n is similar. We will show something
stronger: if ¢ < p and a, + 1 € supp(q), then ¢ € D. Let ¢ < p be such that
a,a + 1 € supp(q). Enumerate supp(q) \ a as g > a1 > -+ > a2 > Qg_1,
where kK > 1, a1 = a and a2 = a+ 1. Since q¢ < p, let p; € A{)’f be such that
q <*p+ (k—1, k-2, , 11, o) (note that the order of the objects is important).
By induction on ¢ < k — 1, we show that

(1) for v; € dom(fg ) and fZ is sensible.
(2) if £ € (v, 1) and p € Ag, then p is sensible, where a1 := 7.
(3) Yit1 = pi(7).

i = 0: Note that f9, = /7@ pig, 50 70 € dom(f2,), and f2, (v0) = pio(") <
Jeay g (uo) (Fay ). For & € (ag,n) and p € Af, dom(uo)Urge(uo), 50 Y0,71 € dom(p).
Clearly p is sensible. Note that v4 = po(7).

i = j+1: By commuting the objects, we can see that fI = p;o (ff @ ;) o,uj_l.
Note that v; = u;(v), so (f5, © i) o u]fl('yi) = p;(7y). Since i < k — 1, we have
@ > a, 80 v < jg,, (Ka,). By this clause, y1;(7) < kq,. Hence u;(y) € dom(u;)
and pu; fixes p;(7y). As a consequence, ;41 = fd (7i) = pi(7y), which is sensible.
Now for & € (o, ), p € AZ, we have that dom(fZ ) Urge(fZ ) C dom(u), hence,
Vi, Vi+1 € dom(p). Finally, since p € Af, p=pjoto ,uj71 for some 7 € A7. Hence,
w(vi) = pj o () = 7(7) (again, p; fixes 7(y)). Hence p is sensible.

Now we see that y;_1 is defined. Note that fI = pg—20(fED pr—1) Ou,;_lz. Since
Vo1 = Hr-2(7), (f8 ® pr-1) 0 p 2o (ye-1) = px—1(7). Finally, since dom(px—1) U
rge(ug—1) € dom(pr—2), we have that y,_1 € dom(f?) as required.

(I

Let G be a generic object for P. Fix a limit ordinal § < 7. Note that the
collection of p? satisfying the initial condition in Lemma is open dense, we may
assume that p® € G. From now on, in V[G], fix Ag and 05 as in Lemma which
are defined from p”. Note that by genericity of G, A\g and 0 is well-defined.

For v € [Rg,03), define a function F,Yﬁ : B — Rg as follows: if a < @, let
Ff(a) = 0. Assume v < /\{1,[3’ find p € G with p lying in the dense open set
below p? from Lemma Enumerate supp(p) N (8 + 1) \ & in decreasing order as
g > -+ > ag_1 = a. Define vy,...,v,_1 as in Lemma and define Ff(a) =
f2(yk=1). If B = n, we remove the superscript 8 and just write F, instead of F,Yﬁ
Let us visualize the definition of F(«) in Figure[6] where 8 = 7.

V3 = fay (72) Y2 = fay (M) Y1 = fay (M)

¥3 € dom(fa;) Y2 € dom(fa,) Y1 € dom(fa,) ¥ =70 € dom(fy,)
Fy(a) = foy (13)
| | I i > supp(p) \ @
az =« as=a+1 o ap

FIGURE 6. The definition of F.,(«) when |supp(p) \ a| =4
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In Figure [6] we assume that in Lemma [9.1] 2 = n and p € D N G. Each p,
is either (f,) or (fa,Aq). We also assume v < X, and assume that a decreasing
enumeration of supp(p) \ a is g > a1 > g > a3 = a (where ag = o + 1).

To check that Fff is well-defined, we consider only the case n = (. Suppose
p,q € G satisfy the conditions in Lemma [9.1] Find » € G with r < p,q. Hence,
((supp(p)Usupp(q))NB)\a C (supp(r)NB3)\a. Assume 7 <* p+(uo, ..., i-1) and
r <* ¢+ (70,...,m-1). For simplicity, assume p; is a 8;-object, 7; is a (;-object,
a<fBp<--<pf_iand a < o< < Cno1. We will show that p and r compute
the same F,(a)-value. A similar argument will show that ¢ computes the same
F,(a) as r. We simplify further that [ =1, p = po.

We see that the value F, () computed by pis f§, _ o...f8 ofd o...fF (7).

tJan Qn—1 T J o

CASE I ¢ > ag: As in the proof of Lemma p fixes f£ () and hence,

is O o fa o fE() = fE, oo fR opo fh o  op(y)
=fo oo fa ome f5,(7)
:fgk—lo'”ofglofgo(’Y)'

CASE IT £ < ap: Let n be the least such that £ < «,,. As in the proof of
Lemma ] 1 fixes f2, (yns1), where yuy = f5, 0 & 00 f2,(7), 50

-1
gquo"' gn+1ofgofgno~~ofgo(7): £k710~~ouof2n+lou ouofgno~~of£0('y)
= f8, o opoflh L off o--oflh (v)
= gkflo"' £n+lof£no"-of£0(v)'

Thus, p and r compute the same F, (o).

Remark 9.2. If v < jg,_(Kat1), then the requirements for a condition p € G that
is used to compute F,(a) can be weakened a bit: the requirement that a + 1 €
supp(p) is not necessary. In practice, if v < jg,(k1), then a scale analysis will
be slightly simpler. Here is a reason. Suppose we start with a condition p with
max(supp(p)) < a, v € d&. Let piq € AP and pl ., be such that v € dom (),
dom(pa) Urge(pta) C dom(pat1). Then po(y) < pa(JE, (Kat1)) = Kat1. Hence
Jlat1© fla © fig 11 © flat1(Y) = fia (7). This concludes that p+ jiq and p+ (pa; fla+1)
compute the same F, (a)-value.

Proposition 9.3. In V|G|, (F/ : v € [Rg,0p)) is <pa- increasing, where for each
pair of ordinal functions t,t’ with domains limit ordinal 6, t <pq t' means there is
a < 0 such that for all &' > «, t(a') < t'(d).

Proof. We prove the case 3 = 1. The case 8 < 7 is similar. Let 7,7 € [R,, \]),
v <. Let £ < n be such that 4" < )\2. We will show that F, <uq Fy by a density
argument. Let p € P. We can find p’ < p and & > £ such that max(supp(p’)) < &,
~ and v are in the domains of the ath Cohen parts and measure-one parts of p for
all a > &.

We can also assume that for a > ay, the domain of each object in A’O’; contains
v, and 7. We will show

P Ik Ya > &(F, (o) < Ey(a)).
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This is true because for each o > &, if ¢ < p’ can be used to define F,(a) and
F.: (), the functions used to compute their values computed (from ¢) are just com-
positions of objects. Every object is order-preserving, and by a density argument,
we are done. (]

By Proposition we conclude that in V[G], 257 > |M|. Recall that [N,V is
regular. If (|\,|V : o < n) is not constant on the tail, then by a classical Kénig’s
result on cardinal arithmetic, 257 > A |. With GCH, [P| = A |. By the nice name
theorem, (257)VIG] < [|P]}" 4|V, We now have two cases: the case where (MY :
« < n) is eventually constant, and the case where (|, |V : a < 7) is not eventually
constant. For the first case, (|M,|V : @ < 1) is eventually constant, say the constant

value is 6. Then |[P|* ®Fn|V =9 = SUP,, <, |A,|. Hence 277 = sup,, ., [M,|. For the
second case, we have that |[P]* ®1|V = [M|*. Hence 277 = (sup,., |M,[)". We

now conclude the cardinal arithmetic of 2.

Theorem 9.4. By forcing with P (g .q<yy, where n is reqular, we have that
(1) if (IMN,|Y : « < n) is eventually constant, then in V|G|, 2Fn = 5\%|
(2) if (IMLIV - a <n) is not eventually constant, then in V[G], 2% = | X |T.

10. SCALE ANALYSIS
First we define a notion of scales.

Definition 10.1. Let p be a singular cardinal and £ > p. A scale on p of length &
is a family of functions f = (f, : @ < &), together with 7= (pg : f < cf(p)) such
that

(1) p'is an increasing sequence of regular cardinals, cofinal in p, and py > cf(p).

(2) fa € H PB-
B<cf(p)

(3) for ap < a1 <&, fay <vd fa, (recall that this means there exists Sy < cf(p)
such that for 8 > Bo, fa,(8) < fa, (B)). A [ satisfying this property is said
to be <pq-increasing.

(4) f is cofinal, namely for any h € [] pg, there is an a < £ such that

B<cf(p)
h <pa fo-

In Deﬁnitionm it is oftenly enough to define f,(8) for all sufficiently large g,
since the scale properties only refer to how functions are on their tails.

Definition 10.2. Let f: (fa : a < &) be ascale. Then f is an ezact upper bound
(eub) for f if

(1) f is an upper bound for f,i.e. for o < &, fo <va f.

(2) If g <pq f then there is an « such that g <pq fo-

Note that if f is an eub of f: f(«) is regular for sufficiently large «, and f is

increasing on the tail, then f is a scale on [] f(«).
a<n

Definition 10.3. For a scale (fo : v < pT) on ] ps where p = supgs_.4(,) ps
B<cf(p)

we say that an ordinal a < p™ with cf(a) > cf(p) is very good if there are a club

C C « of order-type cf(a) and an ordinal 5y < cf(p) such that for oy < a3 < £ and
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B> Boy fao(B) < far(B). A scale for a singular cardinal p is very good if every «
with cf(a) > cf(p) is very good.

We follow our definitions from Section[J] Namely, we have the ordinal functions
F,f as well as F,. We now make some scale analysis. Note that if 8 < n is limit,

we have that ()\;)V = (RE)V[G]. In particular, (A")Y = (&;})VI9).

Proposition 10.4. In V|G|, for 8 < n limit. Let { < 8g be such that cfVI¢] &) >
Rg. Then Ff is an eub for (F,f 1y € [Rg, §)).

Proof. We have already checked in Proposition[0.3|that the sequence is <p4-increasing.
It remains to show that the sequence is cofinal. We will only show the case 5 = 7.
Assume for simplicity that £ < )\6.

Clearly F¢ is an upper bound of (Fg : & < &). Let h be a P-name such that
pl-he [o< Fg(a). We are going to build a <*-decreasing sequence {¢* : a < 7
or a = —1). Let ¢! = p. Suppose ¢° is built for all 3 € o U {—1}. Let (¢®)*
be a <*-lower bound of (¢ : B € aU{-1}). Fix a < n. Let D, = {q : ¢
decides h(a)} By the strong Prikry property, find ¢ <* (¢%)* witnessing the
strong Prikry property of D, with the corresponding finite set I,,. We assume that
a,a+ 1€ I, Forji e [[ AL, write ji = (ity)yer,. Define Y, (ji) as the value

V€l
that ¢ + (i decides for h(oz). It is easy to check that the decided value is less than
the value F¢(a) computed by ¢ + i, which is pat1(ta(§)). For fi € [ er \q A%
define Z, (i) = supz(Yo (7)) + 1. Note that the number of possible such 7 is
Aa(fta) = Sa(tta(ka)). By our assumption on cofinality of £, we may assume that
Aa(fta) < cf(pat1(a(€)) (this can be done on a measure-one sets), so Z, (i) <
pat1(pa(§)) and for e [ A%, g+ jil- ha) < Zg(fi). For v > a+1, let
yel \
. q
AL = AP @Fmeenlen) “ppenfor fe T[T AL and 4 € AZ (recall that
v€la\(a+2)

A% =mcay1(d? 1) 0 (jEo 1 (AL))meas, omey i (dl, ) as shown in Lemma ,

an+1(q) + <mca+1(di+l)’—\1/f—\ﬁ> I an+1 (h(a)) < mCa+1(di+1)(an+1(¢)jEu+1(f))-

Notice that the order of the objects is not increasing: mc,41 is an a + 1-
object, while ¢ is an a-object. Also, jg, ., (q) + (mcat1(dl )" V) = je...(q) +
(jE. ()" mcay1(dl, ), which is why the value at the rightmost of the forcing
relation is mcaq1(dd 1) (JE.+1(¢)jE.+1(€)). Note that the last value in the forc-
ing relation, which is mca41(d2 1) (JE.: (V)JE.,. (€)), is equal to ¥(§). Note that
Y(€) < A Fix ¢ € AL. For v € I, \ (o +2), jg,,,(A?) comes from a measure
which is jg, ,, (k)-complete, and jg,,, (ky) > K% > A, we can inductively shrink
Az for v € I \ (e + 1) to B,y so that the following holds: there is 74,4 < 9(&)
such that for all 7 € II By,

yelo\(a+2)
an+1 (q) + <II1C;\+1 w/\/j> I+ an+1 (h(a)) = Yo,
which is equivalent to saying that for ¢ € jg_ ., [AZ], and ji € 11 By 4,
YE€la\(a+2)

an+1(q) + (1/)/\ MmCa41 A/_j> I+ an+1 (h(a)) = ’ya’jgl+1(¢)
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Let’s replace the notation ’y“’jgiﬂ(“/’) by Ya,u. Fix ¢ € A2. By elementarity,

there are measure-one sets A, C A for v € I, \ (w4 1) such that for i €

I1 Ay,
yEIL\(a+1)
g+ (¥7f) - h(@) = tas1(Yaw)-
For v € I, \ (e + 1), let AZ = Aycqa Ay 4. Shrink all measure-one sets A? for
such v in g to A% and call the new condition ¢'. Let 7o = jg, (¥ + Ya,y)(mca(dd)).
Then v, < A). Extend ¢’ to ¢* so that v, € dgj. Then note that

JEa (T = 7)) (mea (dL) = 7a
= JB. (¥ = Vo) (mca(d))
= jB8a (T Ya,r1as) (0 (dE)).
Then there is a measure-one set A% € F,(d% ) such that for 7 € A%, 7(ya) =
Yo, r1dg, - Shrink the a-th measure-one set to in ¢* to A7, and call the final condition

q“. Replace the notation v, 142 by Va,r- We see that for 7 € AL € Aquila and
S Hvela\(a-s-l) A%, we have

¢+ (177 E) Ik h(a) = p(r(va)) = B, (@).
Let r be a <*-lower bound of (¢* : @ < 1), and v* = sup,, 7. This is less than
¢ since cf(§) > .

Claim 10.4.1. There is s <* r such that s - VaVvs < n(Fyﬁ(a) < Ey-(a)).
Proof (Claim [10.4.1)

Note that we assume £ < )\%. Let s <* r be such that 7, for all & < 7, and ~*, are
in dj and for 8 <n, p € Aj, we assume that {7, : a <n}U{y*} C dom(u). Since

objects are order-preserving, we have that s IF Va < n¥g < n(Fyﬁ (@) < Eye ().

B (Claim [10.4.1)
We now show that s |- h <pq Fy«. Fix an o < n. Let s’ < s. By the density,

assume that I, C supp(s’), so s decide h(«). Note that s’ < ¢® 4 ji for some

i€ g AL" s0 8 - h(a) = F, (@) < Fy(a).
’Y «@
U

Corollary 10.5. In VI[G], for 8 < n limit. Let & € (Ag,03) be regular. Then
<Ff 1y € [Rg,§)) is a scale in [],, Ff(a),

In Collorary we need that & > Ag because all cardinals in the interval
(R, Ag] are collapsed in V[G] (as in Theorem . We may read off Ff for € < &)
from a generic object in a simpler way if we assume that for o < 7, there is
Vo @ Ko — Kq such that jg_ (va)(kq) = & Then one can verify that in the extension,
Fe(@) = ve(f2(ka)) for some p € G with a € supp(p). In particular, if £ € (A, &)
is regular, then (F), : v € [Rg,§)) is a scale in [] ve(fE(kqa)) for p € G with

a<n
a € supp(p). Note that since jg, (s4)(ka) = A and * Ult(V, E,) C Ult(V, E,), the
function s/, : ko — Kq defined by s/ (v) = sa(v)" represents At in Ult(V, E,).
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Hence (F, € [R,, (AT)Y)) is a scale in [] so(fa(ka))™ when f, = f? for some
a<n

p € G with « € supp(p). A similar argument explains a situation for limit 8 < .
Thus we have the following.

Proposition 10.6. In V|G|, for § < n limit, (Ff 1y € [Rg, (RE)V[G}» is a scale
in 1] sa(fa(ka))T. Every v € (Rg, (k )V[GD> with B < cf¥ () < &g is very good.

a<n
As a consequence, the scale is very good.

Proof. We prove only the case 3 = 7. Recall that (AT)V = (R;)V[G]. In V, let
v € [Ry, AT) with n < VI () < Ky. By Theorem we have that cf” (y) < &,).
Assume cf(y) < Kq,. Let C C v\ &, be a club of order-type cf(v). Extend p to ¢
such that C' C dgo, and for o > ag and p € A%, C C dom(p). It is now easy to see
that ¢ IF VBy, 5 € C(ﬁo <pf = Va> Oéo(F[gO(Oé) < Fgl (a)))

O

11. CONCLUSION

We prove the following theorem:

Theorem 11.1. Assume GCH. Assume the result of Theorem where the
length of the sequence of extenders is a regular cardinal n (including w). Assume
that in the context of Theorem liz, (MY is reqular for all o <. There is a
Att-c.c. forcing notion P =P, .q<y) such that
(1) P satisfies the Prikry property and the strong Prikry property.
(2) let G be P-generic. Forlimito <, let Aq = Sa(fE(Ka)) where ju_, (Sa)(Ka) =
A. All cardinals in the intervals (Ro, AY), for a < n limit, and (R, AT) are
collapsed. Other cardinals are preserved.
(3) If {ljp. (MY : o < m) is eventually constant, then 257 = sup,_, i, (A,
otherwise 271 = (sup, <, [z, (AT
(4) Fiz a limit ordinal B < n, p € G and B € supp(p). For a < S, 1
)\a’ﬁ = t5(f5(kp)). Then if <|/\] B‘V a < B) is eventually constant, then

276 = sup, g \)\iﬁ| Otherwise, 279 = (sup, 4 |)\a7[3|)

We point out an interesting phenomenon, thanks to a discussion with Gitik. If
is a singular cardinal in a ground model, then it is possible to preserve k, collapse
kT, and preserve all cardinals above xT. Here is our explanation. When we set
A = (sup,«, Ka)" in Theorem (11} then the only cardinal above sup,, ., ko Which is
collapsed is (sup,, #a)t. All the cardinals above are preserved in an extension.

Remark 11.2. (1) The assumption for Theorem [11.1| that |\ |V is regular
can be relaxed. We actually just need cf(|Ag|V) > )\+ to obtain the same
cardinal arithmetics. It is still possible to weaken the GCH assumption to
build the forcing, and the value of 2% will depend on the cardinal arithmetic
assumption assumed in the ground model.

(2) The functions u? for B < « are not necessary to define the forcing at
all, In fact, the functions s,,t?,u? defined at the beginning of Section
are not necessary. Here is the reason: for each a-object u, we have
sa(p(ka)) = 1N, 2 (u(ka)) = p(N) and u (u(xa)) = p(N). Instead of
imposing the requirements for v to be a-reflected in Definition [3.1 we can
add more corresponding requirements to p being an a-object in Definition
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for example, since A = jg_ (1 — p(A))(meq(dy)), we can say that every
a-object p is such that p(A) is regular. However, definability of important
cardinals helps keeping track of the reflection phenomenon in a slightly
easier way.
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