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Abstract. We build a supercompact version of the forcing defined in [1]. For

each singular cardinal in the ground model with any fixed cofinality, which
is a limit of supercompact cardinals, it is possible to force so that the size

of the powerset of the singular cardinal is arbitrarily large, while preserving
the singular cardinal. An important feature of this forcing which is different

from the forcing in [1] is that it is possible to define the forcing so that the

successor of the singular cardinal is collapsed, but all the cardinals above it
are preserved.

1. introduction

The Singular Cardinal Hypothesis (SCH) states that if κ is a singular cardinal,
then 2κ has the smallest possible value under all cardinal arithmetic provable in
ZFC. In particular, if κ is singular strong limit, then 2κ = κ+. Gitik [1] built a
forcing from overlapping extenders witnessing strongness in which SCH fails for a
singular cardinal of arbitrary fixed cofinality, assuming that the singular cardinal is
singular in the ground model. Let κ be such a cardinal and λ > κ be regular. It is
possible to blow up the value of 2κ to be λ. The large cardinal assumption used to
build the forcing in [1] is the existence of an increasing sequence of strong cardinals
⟨κα : α < cf(κ)⟩ whose supremum is κ, where each cardinal κα carries an extender
witnessing some strongness of κα, and for each α < β, Eα ∈ Ult(V,Eβ). With
some interleaved supercompact cardinals, the forcing also gives some interesting
combinatorial results on successors of singular cardinals, e.g. a stationary reflection
principle and a failure of the approachability property (see [2], [3]).

In this paper, we build a forcing which is a supercompact version of [1]. We
prepare an increasing sequence of supercompact cardinals ⟨κα : α < η⟩ such that if
λ > supα<η κα is regular, each κα carries a long extender Eα witnessing κα being λ-

supercompact, and jα : V → Ult(V,Eα) is such that jα(λ) ≥ λ++ (we can prepare
the value jα(λ) to be arbitrarily high), then we define a λ++-c.c. forcing such that
in an extension, 2supα κα ≥ supα |jα(λ)| and supα κα is preserved. Below supα κα,
most of the cardinals will be preserved. The only cardinals which are collapsed in
the extension belong to one of the intervals of the form (supγ<β κγ , λ

+
β ) with β < η

limit, for some λβ < κβ (the value λβ will be determined from the generic object),
or the interval (supα<η κα, λ

+).
We make some notations for our convenience. For a sequence x⃗ = ⟨xα : α < η⟩,

let x⃗ ↾ β = ⟨xα : α < β⟩ and x⃗ \ β = ⟨xα : α ≥ β⟩. If X is a set of sequences, let
X ↾ β = {x⃗ ↾ β : x⃗ ∈ X}. Define X \ β is a corresponding fashion For functions
f, g and h, define f ◦ g ◦ h as a function with domain {x ∈ dom(h) : h(x) ∈
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dom(g) and g(h(x)) ∈ dom(f)}, and for x ∈ dom(f ◦g◦h), f ◦g◦h = f(g(h(x))). If
X is a set of functions and g and h are functions, define g◦X◦h as {g◦f ◦h : f ∈ X}.
If f is a function and d is a set, define f ↾ d as f ↾ d ∩ dom(f). If X is a set of
functions and d is a set, define X ↾ d = {f ↾ d : f ∈ X}. If f and g are functions
and dom(g) ⊆ dom(f), define f ⊕ g, f overwritten by g, as a function h with
dom(h) = dom(f), h(x) = g(x) if x ∈ dom(g), otherwise g(x) = f(x). We point
out the locations where we give non-standard notations which we use throughout
the paper in order to facilitate the readers: the paragraph after Definition 2.12 and
the last paragraph in Section 3. We also recall some important values timely. The
organization of this paper is as follows, where we note that from Section 3 - 10 we
assume GCH.

• In Section 2 we make an analysis of a characterization of extenders which
capture supercompactness. In particular, if GCH holds and j : V → M
witnesses κ being λ-supercompact, then the (κ, j(λ))-extender E derived
from j captures λ-supercompactness, and jE(λ) = j(λ). Then the sequence
of extenders which are Mitchell increasing is derived.

• In Section 3 we analyze the sequence of extenders which are built from
Proposition 2.14. We define domains and objects which were first introduced
by Gitik and Merimovich [4]. Those concepts are important features in our
forcing.

• In each of Section 4, 5, 6, and 7, we define forcings from sequences of ex-
tenders whose sequences are of different lengths. This is due to the fact
that the proofs of the Prikry property and the strong Prikry property of
a forcing rely on inductions on the lengths of the sequences of extenders.
In particular, to prove that the properties hold for a forcing defined from
a sequence of exntenders whose sequence has a certain length, the Prikry
property and the strong Prikry property of the forcings defined from se-
quences of extenders of shorter lengths are required. We prove the Prikry
property in Section 4, 5, and 6, and the sketch of the proof of the strong
Prikry property is provided in 6 only. The forcing in Section 7 has the most
general form.

• In Section 8 we determine the cardinals which are preserved and collapsed.
• In Section 9 we show that our forcing breaks the Singular Cardinal Hy-
pothesis on the singular cardinals which are suprema of the supercompact
cardinals.

• In Section 10 we make some analysis of the scales which are derived natu-
rally from our forcing.

We finally draw a conclusion in Section 11. We assume that the readers are
familiar with forcings and extenders.

2. supercompact extenders

In this section we determine the lengths of an extender which captures super-
compactness of an embedding. For the detailed account on extenders, see Chapter
26 of [5].

Definition 2.1. Let κ < λ be cardinals. κ is <λ-supercompact if there is an
elementary embedding j : V →M such that crit(j) = κ, j(κ) > λ, and <λM ⊆M .
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Some set theorists define κ to be <λ-supercompact as κ being γ-supercompact
for γ < λ. This is strictly weaker than what we define in Definition 2.1. Others
may allow the value j(κ) in Definition 2.1 to be at least λ, although such κ in the
definition with j(κ) = λ characterizes almost hugeness of κ.

We will make an analysis of the extender derived from an elementary embedding
j witnessing some supercompactness. In the end, we only consider the situation
when κ is λ-supercompact, but it is worth analysing the case κ is < λ-supercompact.
Thus, we will make an analysis for both cases.

Let j : V → M be an embedding witnessing κ being <λ-supercompact. Fix
ξ ≥ λ. We give an overview of the structure of the (κ, ξ)-extender E derived from
j. For each a ∈ [ξ]<ω, let λa be the least ordinal such that max(a) < j(λa). Define

A ∈ Ea if a ∈ j(A).

Ea is a κ-complete ultrafilter on [λa]
|a| (note that E{κ} is normal). Let ja : V →

Ma = Ult(V,Ea). The map ka([f ]Ea) = j(f)(a) is an elementary embedding from
Ma to M .

If a ⊆ b ∈ [ξ]<ω, we enumerate b in increasing order as α0 < · · · < α|b|−1.
Assume the increasing enumeration of a is αn0

< αn1
· · · < αn|a|−1

. There is a

natural projection map πb,a : [λb]
|b| → [λa]

|a| defined by

πb,a({β0, β1, . . . , β|b|−1}) = {βn0
, βn1

, . . . , βn|a|−1
} where β0 < β1 < · · · < β|a|−1.

This induces an elementary embedding ia,b :Ma →Mb by the map

[f ]Ea 7→ [f ◦ πb,a]Eb
.

The family

⟨Ma, ia,b : a ⊆ b ∈ [ξ]<ω⟩
forms a directed system. Let ME be its direct limit. We can form, for all

a ∈ [ξ]<ω, elementary embeddings

ja,E :Ma →ME

and

jE : V →ME

such that

jE = ja,E ◦ ja for all a.

Note that ME is isomorphic to an elementary submodel of M with the factor
map k : ME → M defined as follows: For x ∈ ME , x = ja,E([f ]Ea) for some a,
define k(x) = j(f)(a). Hence, ME is well-founded, we identify ME as its transitive
collapse, and assume that k is the inverse of the transitive collapse from rge(k) onto
ME .

V M

Ma ME

Mb

j

ja,E

k

jE

ia,b

kbjb

ka

ja

jb,E
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We prove a series of basic properties regarding the map jE .

Proposition 2.2. crit(k) ≥ ξ. If ξ = j(β) for some β, then crit(k) > ξ. In
particular, if ξ > λ, then jE(κ) > λ.

Proof. For γ < ξ, γ = j(id)(γ) ∈ rge(k), so γ ∈ rge(k). Since k is the inverse of the
transitive collapse, ξ ⊆ ME and k ↾ ξ = id. Suppose ξ = j(β) and jE(β) < j(β).
Then jE(β) = k◦jE(β) = j(β), a contradiction. Hence jE(β) = j(β), so j(β) ∈ME

and k(j(β)) = j(β).
□

The following proposition is not used in this paper, but is worth being mentioned.

Proposition 2.3. If there is a function s : κ → κ such that j(s)(κ) = λ, then
crit(k) > λ.

Proof. Since ξ ≥ λ, crit(k) ≥ λ. If λ = j(s)(κ) = k(jE(s)(κ)), λ ∈ rge(k), and so
crit(k) > λ.

□

Proposition 2.4. ME = {jE(f)(a) : a ∈ [ξ]<ω and f : [λa]
|a| → V } and k(jE(f)(a)) =

j(f)(a).

Proof. For a ∈ [ξ]<ω, k(a) = a, so k−1(j(f)(a)) = jE(f)(a).
□

To determine if ME is closed under <λ-sequences, it is enough to determine if
rge(k) is closed under <λ-sequences.

Proposition 2.5. Assume ξ ≥ sup j[λ]. The following are equivalent:

(1) <λ rge(k) ⊆ rge(k).
(2) <λξ ⊆ rge(k) and for γ < λ, j[γ] ∈ rge(k).

Proof. The forward direction is trivial. We prove the backward direction. By some
simplification, assume that elements in <λ rge(k) are of the form x⃗ = ⟨j(fα)(γα) :
α < γ⟩, where γα < ξ and γ < λ. Let f⃗ = ⟨fα : α < γ⟩ ∈ V and γ⃗ = ⟨γα : α < γ⟩.
Then the map α 7→ the α-th element of j(f⃗)(j[γ]) represents x. By our assumption,
x⃗ ∈ rge(k).

□

Similar proof shows that

Proposition 2.6. Assume λ = ρ+ for some cardinal ρ and ξ ≥ sup j[ρ]. The
following are equivalent:

• ρ rge(k) ⊆ rge(k).
• ρ[ξ] ⊆ rge(k) and j[ρ] ∈ rge(k).

Proof. Similar to the proof of Proposition 2.5.
□

Remark 2.7. In Proposition 2.5 (Proposition 2.6), it might be possible that in
some circumstances, e.g. j(λ) (j(ρ)) is very high, there is ξ < j[λ] (ξ < j[ρ]) which
captures <λ-supercompactness (ρ-supercompactness).

Lemma 2.8. Assume GCH.
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(1) There is a sequence Γ = ⟨xα : α ∈ ON⟩ of elements [ON ]<κ such that if γ
is a cardinal, cf(γ) ≥ κ, then Γ ↾ γ ⊇ [γ]<κ.

(2) Let s : κ→ κ. There is a sequence Γ = ⟨xα : α ∈ ON⟩ of [ON ]<κ such that
if γ ≥ κ is a cardinal, and α is such that cf(γ) ≥ s(α), then Γ ↾ γ ⊇ [γ]<s(α).

(3) Let j : V →M witness κ being <λ-supercompact. Then

• if ξ is a cardinal in M , ξ ≥ sup j[λ], and cfM (ξ) ≥ j(κ), then the
(κ, ξ)-extender E derived from j preserves <λ-supercompactness of κ.

• if there is a function s : κ → κ such that j(s)(κ) = λ, then for an
ordinal ξ which is a cardinal in M , ξ ≥ sup j[λ], and cfM (ξ) ≥ λ, the
(κ, ξ)-extender E derived from j preserves the <λ-supercompactness of
κ.

Proof. (1) We proceed by induction that for each cardinal γ with cf(γ) ≥ κ,
the length of the sequence being built so far will have total length γ. We
abusively write Γ ↾ γ for the sequence of length γ we have built so far.
The first cardinal is κ. By GCH, |κ<κ| = κ, so that building a sequence
containing [κ]<κ of length κ is trivial. Suppose γ is a cardinal, cf(γ) ≥ κ
and the Γ ↾ γ′ is built for γ′ < γ. If γ = (γ′)+, then the sequence had been
built so far has length γ′. Since |γ \ γ′| = γ and |γ<κ| = γ, we can list the
sequence so that Γ ↾ [γ′, γ) ⊇ [γ]<κ. If γ is a limit cardinal and cf(γ) ≥ κ,
then [γ]<κ = ∪γ′<γ [γ

′]<κ, so the sequence that has been built so far takes
care of the cardinal γ already. Hence, the proof is done.

(2) A similar argument as in (1) works.
(3) Assume j : V →M witnesses κ being <λ-supercompact.

• Let Γ be as in (1). Let x⃗ := j(Γ) ↾ ξ. Then x⃗ ⊇ ([ξ]<j(κ))M ⊇ [ξ]<λ.
We see that for x ∈ [ξ]<λ, we have that x = x⃗(γ) for some γ < ξ.
Since ξ ≥ sup j[λ], we can also consider the case where x is j[α] for
any α < λ as well, so the proof is done.

• Let Γ be as in (2). Note that in this case, cfM (ξ) ≥ j(s)(κ) = λ, so
j(Γ) ↾ ξ ⊇ ([ξ]<λ)M = [ξ]<λ. The rest of the proof is the same as in
the previous bullet.

□

The following lemma can be proved in a similar fashion.

Lemma 2.9. Assume GCH.
(1) Let s : κ → κ. There is a sequence Γ = ⟨xα : α ∈ ON⟩ of [ON ]κ such that

if γ ≥ κ is a cardinal, and α is such that cf(γ) > s(α), then Γ ↾ γ ⊇ [γ]s(α).
(2) Let j : V →M witness κ being ρ-supercompact. Then

• if ξ is a cardinal in M , ξ ≥ sup j[ρ], and cfM (ξ) ≥ j(κ), then the
(κ, ξ)-extender E derived from j preserves ρ-supercompactness of κ.

• if there is a function s : κ → κ such that j(s)(κ) = ρ, then for an
ordinal ξ which is a cardinal in M and cfM (ξ) > ρ, the (κ, ξ)-extender
E derived from j preserves ρ-supercompactness of κ.

Remark 2.10. The GCH assumption in Lemma 2.8 and 2.9 can be weakened.
The cardinal arithmetic requirement for ξ to capture supercompactness depends on
the value ξ.

Remark 2.11. • If j witnesses κ being ρ-supercompact (equivalently <ρ+-
supercompact), then definability of ρ is equivalent to definability of ρ+.
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More specifically, if j(s)(κ) = ρ+, then there is a function t such that
t(α) = s(α)+ on a measure-one set, and hence j(t)(κ) = ρ.

• For a <λ-supercompact embedding j : V →M , a few instances of ξ where
the (κ, ξ)-extender derived from j preserves the <λ-supercompactness are
((sup(j[λ]))+)M , j(λ), and if there is a function s : κ → κ such that
j(s)(κ) = λ, then ξ = sup(j[λ]) also gives an instance of an extender
witnessing < λ-supercompactness.

• For a ρ-supercompact embedding j : V → M with λ = ρ+, some values ξ
where the (κ, ξ)-extender E derived from j preserves the ρ-supercompactness
are ((sup(j[ρ])+)M and j(ρ).

Note that if a we derive a (κ, j(λ))-extender E from j, then jE(λ) = j(λ). In the
future, when we introduce an extender E, we may say that E is a (κ, jE(λ))-extender
without referring j. Observe that among elementary maps j : V → M witnessing
<λ-supercompactness, the lowest possible cardinal of j(λ) computed in V is λ.
Similarly, among elementary maps j : V →M witnessing ρ-supercompactness, the
lowest possible cardinal of j(ρ) in V is ρ+. We end this section by giving a definition
of an extender in our context.

Definition 2.12. E is a (κ, ξ)-extender if E is a (κ, ξ)-extender derived from some
elementary embedding j.

For x ∈ V , denote jE(x) by x
jE (for instance, j(κ), j(λ) are denoted by κjE , λjE ,

respectively). Fix a sequence ⟨Eα : α < η⟩ such that for α < η, Eα is an (κα, λ
jEα )-

extender. For α < η, define κjα = κα
jEα , λjα = λjEα (so that Eα is an (κα, λ

j
α)-

extender). For α ∈ (0, η] define κ̄α = supβ<α κβ , κ̄
j
α = supβ<α κ

j
β , and λ̄jα =

supβ<α λ
j
β . Let λ̄

j
0 = λ. Note that κ̄α, κ̄

j
α, and λ̄

j
α are defined without mentioning

κα, κ
j
α, and λ

j
α, respectively.

Definition 2.13. A sequence of extenders ⟨Eα : α < η⟩ is Mitchell increasing if
for β < α, Eβ ∈ Ult(V,Eα). The last equation is denoted by Eβ ◁ Eα.

Proposition 2.14. Assume GCH. Let η > 0 be an ordinal and ⟨κα : α < η⟩ be an
increasing sequence of supercompact cardinals, and κ0 > η. Let λ > supα<η κα and
for α < η, λκα = λ. Then there is a sequence ⟨Eα : α < η⟩ such that

(1) Eα is an (κα, λ
j
α)-extender witnessing κα being λ-supercompact.

(2) for β < α < η, there are functions sα : κα → κα, t
β
α : κα → κα ,

and hβα : κα → Vκα
such that jEα

(sα)(κα) = λ, jEα
(tβα)(κα) = λjβ, and

jEα
(hβα)(κα) = Eβ. In particular, Eβ ◁ Eα and there is uβα : κα → κα for

β ≤ α such that jEα
(uα)(κα) = λ̄jβ.

(3) |λjα|V is regular.

Furthermore, if γ is an ordinal, then we prepare E0 so that jE0
(κ0) > γ.

Proof. By a Laver’s diamond function for κ0, let s0 : κ0 → κ0 and j0 : V → M0

be such that j0 witnesses κ0 being λ-supercompact, and j0(s0)(κ0) = λ. We may
assume that j0 is a map derived from a supercompact measure Pκ0

(γ+), so j0(κ0) >

γ and |λj0|V is regular. Derive a (κ0, j0(λ))-extender E0. If k0 : Ult(V,E0) → M0

is the factor map, then crit(k0) > j0(λ). Hence, κj0 = j0(κ0) > γ, λj0 = j0(λ) has
a regular size in V and jE0(s0)(κ0) = λ. By Lemma 2.9, jE0 witnesses κ0 being
λ-supercompact.
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Assume α > 0 and ⟨Eβ : β < α⟩, sβ , tβ
′

β , and hβ
′

β are built. By a Laver’s diamond

function for κα, let sα : κα, t
β
α : κα, and h

β
α : κα → Vκα

, and jα : V → M be such

that jα witnesses κα being (λ̄jα)
+-supercompact, jα(sα)(κα) = λ, jα(t

β
α)(κα) = λjβ ,

and jα(h
β
α)(κα) = Eβ . Then derive a (κα, λ

j
α)-extender Eα. Assume that jα is

from a supercompact measure so that |λjα|V is regular. It is easy to check that Eα
is as required. Hence, the proof is done.

□

Remark 2.15. In Proposition 2.14, the cardinal arithmetic assumption can be
weakened to: for α < η, λκα = λ.

3. an analysis on a coherent sequence of extenders

From now on, we always assume GCH. Let ⟨κα : α < η⟩, λ, ⟨Eα : α < η⟩, ⟨sα :
α < η⟩, ⟨tβα : β < α < η⟩, ⟨hβα : β < α < η⟩ and ⟨uβα : β ≤ α < η⟩ be as in
Proposition 2.14, where λ is regular. Let κ̄0 = η+. We also assume that sα, t

β
α, u

β
α

are strictly increasing, and their ranges are subsets of (κ̄α, κα). Note that λ̄jβ+1 =

λjβ , we may assume that uβ+1
α = tβα. If α is limit, and β < α, then λjβ < λ̄jα, so we

may assume that tβα(γ) < uαα(γ) for all γ. In general, if f, g : κα → κα, f represent
an ordinal lower than the ordinal represented by g in Mα = Ult(V,Eα), we will
assume that f(γ) < g(γ) for all γ. Define Eα(κα) as follows: For A ⊆ κα, let
A ∈ Eα(κα) iff κα ∈ jEα(A). Then Eα(κα) is just a normal measure on κα, which
is isomorphic to Eα({κα}).

Fix α < η. Recall that jEα
: V → Mα = Ult(V,Eα). We refer to the notions

(which will often be used for the rest of the paper) in the paragraph after Definition
2.12. We now list all key ingredients in Mα. Then we reflect the properties down
to a measure-one set with respect to Eα(κα). Let β < α. We have the following:

• λ = jEα
(γ 7→ sα(γ))(κα) and λ is regular (both in Mα and in V ).

• λjβ = jEα(γ 7→ tβα(γ))(κα).

• cfMβ (λjβ) > κjβ > λ, so cfMα(λjβ) ≥ cfV (λjβ) > λ = jEα
(sα)(κα).

• Eβ = jEα
(γ 7→ hβα(γ))(κα), where h

β
α(γ) is a (κβ , t

β
α(γ))-extender witness-

ing κβ being sα(γ)-supercompact.

• κjβ = jEα
(γ 7→ jhβ

α(γ)(κβ))(κα).
•

jEα
(tβα)(κα) = λjβ

= jEβ
(λ)

= jEα
(γ 7→ jhβ

α(γ)(sα(γ)))(κα)

Furthermore, if ξ < β < α, we have that

(1) λjξ ≤ λ̄jβ < κjβ < λjβ , which directly translates to jEα
(tξα)(κα) ≤ jEα

(uβα)(κα) <

κjβ < jEα(t
β
α)(κα) (recall κ

j
β = jEα(γ 7→ jhβ

α(γ)(κβ))(κα)).

(2)

jEα(γ 7→ jhβ
α(γ)(t

ξ
β)(κβ))(κα) = jEβ

(tξβ)(κβ)

= λjξ

= jEα(t
ξ
α)(κα).
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(3)

jEα
(γ 7→ jEβ↾t

β
α(γ)(u

ξ
β)(κβ))(κα) = jEβ

(uξβ)(κβ)

= λ̄jξ

= jEα
(uξα)(κα).

(4)

Eξ = jEβ
(hξβ)(κα)

= jEα(γ 7→ jhβ
α(γ)(h

ξ
β)(κβ))(κα)

Finally, we note that ⟨Eβ : β < α⟩ is coherent in Mα. We present the order of
all relevant ordinals in Ult(V,Eα) in Figure 1 below, when ξ < β < α.

Figure 1. Important ordinals presented in Ult(V,Eα)

Notice that in Figure 1 we have a few ordinals indicated by parentheses. The
main reason is that we do not assume η to be a limit ordinal. From the bottommost
parentheses, if η = α + 1, then κ̄η = κα, otherwise κ̄η > κα. We also have that

λ̄jβ ≥ λjξ, and they are equal if and only if β = ξ + 1. The analogues also explain

the behaviors of λ̄jα and λ̄jη.
The intuition of the requirements for γ to be α-reflected in Definition 3.1 is that

the requirements are what κα behaves in Mα = Ult(V,Eα). The collection of such
γ in Definition 3.1 is of measure-one, which is stated in Lemma 3.2.

Definition 3.1. γ < κα is α-reflected for the sequence ⟨Eβ : β ≤ α⟩ if
(1) γ > κ̄α is inaccessible.



FORCING WITH OVERLAPPING SUPERCOMPACT EXTENDERS 9

(2) sα(γ) is regular.
(3) If α > 0, then for β < α, let eβ = hβα(γ), then we have that

• κ̄α < sα(γ) < uβα(γ) < jeβ (κβ) < tβα(γ).

• cf(tβα(γ)) > sα(γ).
• jeβ (sβ)(κβ) = sα(γ).
• tαβ(γ) = jeβ (sα(γ)).

• If α is limit, then tβα(γ) < uαα(γ).
• eβ witnesses κβ being sα(γ)-supercompact.
• The sequence ⟨eβ : β < α⟩ is coherent.

(4) If ξ < β < α, and eξ, eβ are defined as above, i.e. eξ = hξα(γ) and
eβ = hβα(γ),

• tξα(γ) ≤ uβα(γ) < tβα(γ).

• jeβ (t
ξ
β)(κβ) = tξα(γ).

• jeβ (u
ξ
β)(κβ) = uξα(γ).

• eξ = jeβ (h
ξ
β)(κβ).

From our analysis, the following lemma is trivial.

Lemma 3.2. {γ < κα : γ is α-reflected for the sequence ⟨Eβ : β ≤ α⟩} ∈ Eα(κα).

We will abbreviate the term ⟨Eβ : β ≤ α⟩ defined in Definition 3.1 if the relevant
sequence of extenders is clear from the context, so we sometimes say that γ is
α-reflect. We emphasize some important different features between Eβ and eβ =
hβα(γ) as defined in Definition 3.1. Let jeβ : V → Ult(V, eβ). Then jeβ witnesses κβ
being sα(γ)-supercompact, where sα(γ) < κα. Also, jeβ (κβ) < jeβ (sα(γ)) = tβα(γ).
The reason we mention these matters is because later while a lot of definitions
are defined with respect to an extender, the definitions can be applied on the
appropiate reflections of extenders, which have different parameters. For example,
see a comment after Definition 3.3.

We now introduce a notion of domain, which was first established by Gitik and
Merimovich, for example see [4].

Definition 3.3. Let α < η. d is an α-domain (with respect to Eα) if d ∈ [λjα]
λ is

such that λ+ 1 ⊆ d, for β < α, κjβ , λ̄
j
β , λ

j
β ∈ d, and κjα, λ̄

j
α ∈ d. Fix an α-domain d.

Define mcα(d) = (jEα
↾ d)−1. Finally, let A ∈ Eα(d) iff mcα(d) ∈ jEα

(d).

Note that the notion of α-domain actually depends on the structure the extender
Eα. If γ is α-reflected and eβ = hβα(γ), then Definition 3.3 is applicable for eβ ,

namely we can say that d is a β-domain with respect to eβ , if d ∈ [tβα(γ)]
sα(γ) with

certain containment. This matter will be investigated further with some forcings’
features, which can be seen in, for instance, Definition 5.3 and 5.4.

We sometimes abbreviate mcα(dα) as mcα whenever dα and the relevant exten-
ders are clear from the context. The notion of α-domain is not ambiguous in the
following sense: if d is an α-domain, then we see that λ̄jα ∈ d and for β > α, λ̄β ̸∈ d,
so the ordinal parameter used to define the domains is easily distinguished.

Definition 3.4. Let d be an α-domain. µ is an α-object with respect to the domain
d if µ is a function such that

(1) dom(µ) ⊆ d, rge(µ) ⊆ λ.

(2) For β < α, κjβ , λ̄
j
β , λ

j
β ∈ dom(µ), and κα, κ

j
α, λ̄

j
α ∈ dom(µ).
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(3) κ̄α + 1 ⊆ dom(µ) ∩ κα = µ(κα) < κα.
(4) µ(κα) is α-reflected.
(5) µ is order-preserving.
(6) µ(j(κjα)) = κjα, as a consequence, rge(µ ↾ κjα) ⊆ κα. In particular, the

values µ(κα), µ(λ), µ(κ
j
β), µ(λ̄

j
β), and µ(λ

j
β) are below κα for β < α.

(7) For γ < µ(κα), µ(γ) = γ.

(8) sα(µ(κα)) = µ(λ), tβα(µ(κα)) = µ(λjβ), u
β
α(µ(κα)) = µ(λ̄jβ) for β < α.

(9) |dom(µ)| = sα(µ(κα)) (which is below κα).
(10) rge(µ) ⊇ sα(µ(κα)) > µ(κα).

Definition 3.5. For an α-domain d, let OBEα
(d) = {µ : µ is an α object with respect to d}.

We may just write OBα(d) instead of OBEα(d) if Eα and d are clear from the con-
text.

We visualize a typical α-object µ in Figure 2 below, where in the figure, β < α
is fixed.

Figure 2. A diagram of a typical α-object µ

In Figure 2, the left vertical line represents the domain and the right vertical
line represents the range. The arrows from the left-hand side to the right-hand
side represents how the α-object µ maps some certain values. The parts which are
highlighted with bold lines and the bold dots are guaranteed to be in the domain
or the range. The parts in the domain which are represented by the dash line and
the dash-line circle are guaranteed to be missing from the domains. Note that the
top ordinals, i.e. λjα and λ, are not in the domain and the range, respectively. The
most important feature of the α-objects, which is said in Definition 3.4, is that all
important ordinals defined from Eβ , including λ, are mapped to ordinals below κα.
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The notion of objects is not ambiguous in the sense that if µ is an α-object, then
|dom(µ)| ∈ (κ̄α, κα).

Proposition 3.6. If d is an α-domain, then OBEα
(d) ∈ Eα(d).

Proof. We will show that mcα(d) ∈ jEα
(OBα(d)). Abbreviate mcα(d) by mcα.

(1) dom(mcα) ⊆ jEα [d] ⊆ jEα(d) and rge(mcα) = d ⊆ λjα.
(2) Obvious by the definition of an α-domain, and the definition of mcα.
(3) dom(mcα) ∩ κjα = κα = mcα(κ

j
α) and κα < κjα.

(4) mcα(κ
j
α) = κα.

(5) mcα is order-preserving.
(6) mcα(jEα(κ

j
α)) = κjα.

(7) crit(jEα
) = κα. Hence for γ < κα, mc(jEα

(γ)) = γ = jEα
(γ) (note that

κα = mc(jEα
(κα)).

(8) jEα
(sα)(mcα(jEα

(κα))) = jEα
(sα)(κα) = λ = mcα(λ

j
α). The rests are

similar.
(9) |mcα | = |d| = λ < κjα.
(10) rge(mcα)) = d ⊇ λ = jEα(sα)(κα) = jEα(sα)(mcα(κ

j
α))).

□

We assume that for every A ∈ Eα(d), A ⊆ OBα(d). Note that although Eα(d)
is only an κα-complete ultrafilter, each A ∈ Eα(d) has size λ. We may add extra
properties into the definition of an α-object as long as the properties are reflected
from mcα. For example, for γ < λjα such that γ ∈ d, if we let λEα,γ be the least
ordinal ξ ≤ λ such that γ < jEα

(ξ), then there is a measure-one set of µ such
that γ ∈ dom(µ) and µ(γ) < λEα,γ , If jEα

(γ) ∈ d, we can even assume that
µ(jEα(γ)) = γ. For each fixed a ⊆ d of size less than κα, we may assume that each
α-object µ has a domain containing a.

Proposition 3.7. If a ⊆ d and |a| < κα, then {µ : a ⊆ dom(µ)} ∈ Eα(d).

Definition 3.8. Let β < α < η, dβ and dα be β and α domains respectively, and
dβ ⊆ dα. Let A ∈ Eβ(dβ) and τ ∈ OBα(dα). Define Aτ as {µ ∈ A : dom(µ) ∪
rge(µ) ⊆ dom(τ)}.

Lemma 3.9. Let β < α < η, dβ and dα be β and α domains respectively, and
dβ ⊆ dα. Let A ∈ Eβ(dβ). Then

{µ ∈ jEα(A) : dom(µ) ∪ rge(µ) ⊆ dom(mcα(dα))} = jEα [A].

Proof. (⊇): For µ ∈ A, |µ| < κβ < κα, so dom(jEα
(µ))∪rge(jEα

(µ)) ⊆ jEα
[dβ∪λ] ⊆

dom(mcα(dα)).
(⊆): Let µ ∈ jEα(A) be such that dom(µ)∪rge(µ) ⊆ jEα [dα]. Then each ordered

pair (γ0, γ1) ∈ µ is of the form (jEα
(γ′0), jEα

(γ′1)). Since every object in A has size
less than κβ , so is µ. Thus, we have that µ = jEα

(µ′) for some µ′, and so µ′ ∈ A.
Therefore, µ ∈ jEα

[A].
□

Definition 3.10. Let β < α < η, dβ and dα be β and α domains respectively, and
dβ ⊆ dα. For each µ ∈ OBβ(dβ), let Aµ ∈ Eα(dα). Define the diagonal intersection
of ⟨Aµ : µ ∈ OBβ(dβ)⟩ as follows:
△µ∈OBβ(dβ)Aµ = {τ : ∀µ ∈ OBβ(dβ)(dom(µ) ∪ rge(µ) ⊆ dom(τ) =⇒ τ ∈ Aµ)}.
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Lemma 3.11. With the settings stated in Definition 3.10, we have △µ∈OBβ(dβ)Aµ ∈
Eα(dα).

Proof. Let B⃗ = jEα
(⟨Aµ : µ ∈ OBβ(dβ)⟩). Write B⃗ as a sequence ⟨Bτ : τ ∈

jEα
(OBβ(dβ))⟩, where BjEα (µ) = jEα

(Aµ) for all µ ∈ OBβ(dβ). For µ ∈ OBβ(dβ),
mcα(dα) ∈ BjEα (µ). Note that by Lemma 3.9, the collection of µ ∈ jEα

(OBβ(dβ))
such that dom(µ)∪rge(µ) ⊆ dom(mcα(dα)) is exactly jEα [OBβ(dβ))] and mcα(dα) ∈
∩µ∈OBβ(dβ)BjEα (µ), hence, mcα(dα) ∈ jEα

(△µ∈OBβ(dβ)Aµ).
□

Before we investigate further on the interactions between two extenders, we
provide some conventions. For each function f whose domain is an α-domain, and
f(κα) is α-reflected for ⟨Eβ : β ≤ α⟩, we denote sα(f(κα)), t

β
α(f(κα)),u

β
α(f(κα)),

and hβα(f(κα)) by λα(f), λ
j
β,α(f), λ̄

j
β,α(f), and eβ,α(f), respectively. Note that

those values actually depend only on f(κα).

Lemma 3.12. Let β < α < η, dβ and dα be β and α domains respectively, and
dβ ⊆ dα. Let A ∈ Eβ(dβ). Let B be the collection of µ ∈ Eα(dα) such that by
letting eβ = eβ,α(µ),

(1) µ[dβ ] is a β-domain with respect to eβ.
(2) µ ◦Aµ ◦ µ−1 ∈ eβ(µ[dβ ]), where Aµ is defined as in Definition 3.8.

Then B ∈ Eα(dα).

Proof. First, notice that mcα(dα)[jEα
(dβ)] = dβ is a β-domain with respect to Eβ .

To show the second item, by Lemma 3.9, {τ ∈ jEα
(A) : dom(τ) ∪ rge(τ) ⊆

dom(mcα(dα))} = jEα
[A]. Note that

mcα(dα) ◦ jEα
[A] ◦mcα(dα)

−1

=mcα(dα) ◦ {τ ∈ jEα(A) : dom(τ) ∪ rge(τ) ⊆ dom(mcα(dα))} ◦mcα(dα)
−1

=jEα
(µ 7→ µ ◦Aµ ◦ µ−1)(mcα(dα)).

Let τ ∈ A and f = mcα(dα) ◦ jEα(τ) ◦ mcα(dα)
−1. Note that γ ∈ dom(f) iff

γ ∈ dα, jEα
(γ) ∈ jEα

(dom(τ)), and jEα
(τ(γ)) ∈ jEα

[dα]. Since rge(τ) ⊆ λ ⊆ dα
and dom(τ) ⊆ dβ ⊆ dα, we have that dom(f) = dom(τ). A straightforward
calculation shows that for γ ∈ dom(f), f(γ) = τ(γ). Hence, f = τ , and so
mcα(dα) ◦ jEα [A] ◦mcα(dα)

−1 = A. The proof is done.
□

Definition 3.13. Let β < α. Fix the β-domain and the α-domain dβ and dα,
respectively, and assume that dβ ⊆ dα. Let A ∈ Eβ(dβ). Let µ ∈ OBα(dα). We
say that µ is (β-)squishable with respect to A if µ ◦ Aµ ◦ µ−1 ∈ eβ(µ[dβ ]) where
eβ = eβ,α(µ). The notion µ ◦Aµ ◦ µ−1 is called the conjugation of Aµ by µ.
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Figure 3. The conjugation µ ◦ τ ◦ µ−1 for an α-object µ and a
τ ∈ Aβ

In Figure 3, we exhibit the situation when β < α < η, τ ∈ Aβ ∈ Eβ(dβ),
µ ∈ Aα ∈ Eα(dα). From left to right, the diagram shows the maps µ−1, τ , µ,
respectively. We can see from the bold arrows and the gray dot-line that the
resulting conjugation is a partial function from tβα(µ(κα)) to sα(µ(κα)). A similar
diagram, which is obtained by replacing the middle part of the diagram in Figure 3
by the function f in Definition 3.17, also explains the situation in Definition 3.17.

Definition 3.14. Let γ0 is be regular and cf(γ1) > γ0, define a poset A(γ0, γ1) as
the collection of functions f such that dom(f) ⊆ γ1, rge(f) ⊆ γ0, and |f | ≤ γ0.
Define f ≤ g iff f ⊇ g. We also define a Cohen forcing with a certain restriction on
the range.

The forcing is γ+0 -closed and is γ++
0 -c.c., so A(γ0, γ1) preserves all cardinals and

cofinalities. The forcing A(γ0, γ1) is equivalent to the Cohen forcing adding |γ1|
new subsets of γ+0 .

Lemma 3.15. Let β < α < η, dβ and dα be β and α domains respectively, and

assume that dβ ⊆ dα. Let f ∈ A(λ, λjβ) with dom(f) = dβ. Let B be the collection

of µ ∈ Eα(dα) such that by letting eβ = eβ,α(µ),

(1) f [dom(µ)] ⊆ dom(µ).
(2) µ[dβ ] is a β-domain with respect to eβ.
(3) µ ◦ f ◦ µ−1 ∈ A(sα(γ), tβα(γ)).
(4) if rge(f ↾ κjβ) ⊆ κβ, then rge((µ ◦ f ◦ µ−1) ↾ jeβ (κβ)) ⊆ κβ.

Then B ∈ Eα(dα).

Proof. To check the first item, note that jEα
(f)[jEα

[dα]] = jEα
[rge(f)] ⊆ jEα

[λ] ⊆
jEα [dα] = dom(mcα(dα)). The second item is proved in Lemma 3.12. Next, we
prove the third item. Let F = mcα(dα) ◦ jEα(f) ◦ mcα(dα)

−1. Then we see that
γ ∈ dom(F ) iff γ ∈ dα ∩ dom(f) = dom(f), and for γ ∈ dom(F ), F (γ) = f(γ).
Hence, F = f . Finally, observe that Eβ = jEα

(µ 7→ eβ,α(µ))(mcα(dα)) and if

rge(f ↾ κjβ) ⊆ κβ , then rge(F ↾ κjβ) = rge(f ↾ κjβ) ⊆ κβ .
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□

We define a Cohen subforcing of the forcing of the form A(γ0, γ1) by adding
a constraint on each Cohen condition. The subforcing will have the same chain
condition and closure.

Definition 3.16. Let BEβ (λ, λjβ) be the collection of f ∈ A(λ, λjβ) such that rge(f ↾

κjβ) ⊆ κβ , where we emphasize that λjβ = λ
jEβ

β = jEβ
(λ). Let γ < κα be α-reflected

with respect to ⟨Eβ : β ≤ α⟩ and β < α. Let λ′ = sα(γ), (λ
′
β)
j = tβα(γ), and eβ =

hβα(γ) (which is a (κβ , (λ
′
β)
j)-extender witnessing κβ being λ′-supercompact. Define

Beβ (λ′, (λ′β)
jeβ ) as the collection of f ∈ A(λ′, (λ′β)

jeβ ) such that rge(f ↾ κ
jeβ
β ) ⊆ κβ .

Definition 3.17. Let β < α. Fix the β-domain and the α-domain dβ and dα,

respectively, and dβ ⊆ dα. Let f ∈ BEβ (λ, λjβ), dom(f) = dβ . Let µ ∈ OBα(dα)

with γ = µ(κα). We say that µ is (β-)squishable with respect to f if f [dom(µ)] ⊆
dom(µ), µ ◦ f ◦ µ−1 ∈ Beβ,α(µ)(sα(γ), t

α
β(γ)). The notion µ ◦ f ◦ µ−1 is called the

conjugation of f by µ.

Definition 3.18. Let β < α. Fix µ ∈ Eα(dα) for some α-domain dα. Assume

a is either ⟨f⟩ or ⟨f,A⟩ where f ∈ BEβ (λ, λjβ) and A ∈ Eβ(dom(fβ)). Then µ is

a-squishable if µ is f and A squishable (if A exists).
Let p be the sequence ⟨pβ : β ∈ [ξ, α)⟩ where pβ is either ⟨fβ⟩ or ⟨fβ , Aβ⟩,

fβ ∈ BEβ (λ, λjβ) and Aβ ∈ Eβ(dom(fβ)), µ ∈ Eα(dα) for some α-domain dα. Then

µ is p-squishble if for β ∈ [ξ, α), µ is pβ-squishable.

Our forcing will be of Prikry-type. An important feature of the forcing is that
once one performs an extension using a legitimate α-object, (one of the require-
ments for a legitimate object is that it is squishable), then for β < α, all the βth
components appearing in the forcing will be “squished”. To present a rough idea,
in Lemma 3.12, if β < α and A ∈ Eβ(dβ) for some β-object, then the conjugation
of Aµ by µ ∈ Eα(dα) is of measure-one in eβ,α(µ)(µ[dβ ]). The height of eβ,α(µ) is
below κα. We will see that the “squished” βth components in our forcing will lie
in Vκα

. In fact, they will live in Vγ for some γ < κα, where γ depends on µ(κα).
Later we define forcings and repeat some certain notions very often, so we give

notions to compact our description. If p is of the form ⟨f⟩ or ⟨f,A⟩, where f is a
function, we denote f, dom(f), rge(f), and A by fp, dp, rp and Ap, respectively. If
p = ⟨pβ : β < α⟩ where pβ = ⟨fβ⟩ or ⟨fβ , Aβ⟩, we denote fβ ,dom(fβ), rge(fβ) and
Aβ by fpβ , d

p
β , r

p
β , and A

p
β , respectively. We sometimes remove the superscript p if

it is clear from the context.

4. forcing with a single extender

We begin with the simplest case, only one extender. We drop all the subscripts
0 here. Recall that we have a (κ, λj)-extender E (recall λj = j(λ)) where j is the
elementary embedding jE : V →M = Ult(V,E) witnesses κ being λ-supercompact,
λ is regular, and there is a function s : κ→ κ such that j(s)(κ) = λ.

Definition 4.1. We define a forcing P∅
E where the conditions are of the form

p = ⟨f,A⟩ such that f ∈ BE(λ, λj), and by letting d = dom(f), we have that d is
a (0-)domain, and A ∈ E(d). For p = ⟨fp, Ap⟩ and q = ⟨fq, Aq⟩, in P∅, we define
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p ≤ q if fp ≤ fq and Ap ↾ dq ⊆ Aq (we call the last relation “Ap projects down to
a subset of Aq”).

Definition 4.2. Define P{0}
E as the collection of ⟨f⟩ for f in BE(λ, λj). The ordering

in P{0}
E is just the usual ordering.

Definition 4.3. Let PE = P∅
E ∪ P{0}

E .

We drop the subscript E to make notations simpler. For example, we have seen
that we wrote λj instead of λjE . We may also write P to refer to PE . Define a
direct extension ≤∗ on P as ≤P∅ ∪ ≤P{0} . If p ∈ P∅, we say that p is pure, and we
write the support of p as supp(p) = ∅. Otherwise, p is said to be impure, and we
write the support of p as supp(p) = {0}.

Definition 4.4. Let p ∈ P∅ and µ ∈ Ap. The one-step extension of p by µ, denoted
by p+ µ, is simply just fp ⊕ µ. Note that fp ⊕ µ ∈ P{0}.

Definition 4.5. Define ≤ on P by p ≤ q if p ≤∗ q or p is a direct extension of a
one-step extension of q.

It is easy to check that if r ≤∗ q + µ and q ≤∗ p, then r ≤∗ p+ (µ ↾ dp). Using
this fact, the relation ≤ is transitive.

Theorem 4.6. P has the Prikry property.

Proof. Fix a Boolean value b. If p is impure, the proof is easy. Suppose p is pure.
Let B = BE(λ, λj) (this is exactly P{0}, but we want to distinguish them as P{0}

refers to impure conditions). First, we show that there are

(1) N ≺ (Hθ,∈, <) for some sufficiently large regular cardinal θ, where <
is a well-ordering on Hθ, such that |N | = λ and <κN ⊆ N such that
λ, λj , b, p,P ∈ N and fp, λ ⊆ N .

(2) f ′ ≤ fp which is N -generic, meaning for each open dense set D in N with
respect to B, there is f ∈ D ∩N such that f ′ ≤ f ≤ fp (as a consequence
f ′ ∈ D).

To accomplish the construction, we build an internally approachable chain of
substructures of (Hθ,∈, <) for some sufficiently large regular cardinal θ, and a
well-ordering < on Hθ, namely a sequence ⟨Nα : α < κ⟩ such that Nα ≺ Hθ,
<κNα ⊆ Nα+1, |Nα| = λ, λ, λj , b, p,P ∈ N0, λ, f ⊆ N0, ⟨Nβ : β ≤ α⟩ ∈ Nα+1, and
if α is limit, Nα =

⋃
β<αNα.

Let N =
⋃
α<κNα. It remains to find f ′. We build a decreasing sequence

⟨fα : α < κ⟩ of elements in B ∩ N such that fα ∈ Nα+1, f
0 ≤ fp, and fα meets

every dense open set in Nα∩B. Note that this is possible since ⟨Nβ : β ≤ α⟩ ∈ Nα+1

and B is λ+-closed. Take f ′ as a lower bound of ⟨fα : α < κ⟩.
Now let N and f ′ be as described above. Let d′ = dom(f ′). By our construction,

d′ is simply just N ∩ λj . Let A′ ∈ E(d′), A′ projects down to a subset of Ap. For
µ ∈ A′, dom(µ) ⊆ d′, rge(µ) ⊆ λ and |µ| < κ, so µ ∈ N .

Fix µ ∈ A′. Define Dµ as the collection of f ∈ A(λ, λj) such that dom(µ) ⊆
dom(f), and if there is g ≤ f ⊕ µ such that g ∥ b, then f ⊕ µ ∥ b.

Claim 4.6.1. Dµ is open dense below fp and is in N .

Proof (Claim 4.6.1)
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We actually prove that Dµ is open dense, which is stronger that the statement.
Clearly Dµ is open. Since Dµ is defined using parameters in N , Dµ ∈ N . To check
the density of Dµ, let f ∈ A(λ, λj). By the density, assume dom(µ) ⊆ dom(f).
Find a condition g ≤ f⊕µ such that g decides b. Define g′ with dom(g′) = dom(g),
g′(γ) = f(γ) if γ ∈ dom(f), otherwise, g′(γ) = g(γ). Clearly g′ ≤ f and g′⊕µ = g,
so g′ ∈ D.

■(Claim 4.6.1)
By genericity, f ′ ∈ Dµ. We have the following property for f ′ (call it (⋆(f ′))):

(⋆(f ′)) For µ ∈ A′, if there is g ≤ f ′ ⊕ µ such that g decides b, then f ′ ⊕ µ
decides b.

Let A0 be the collection of µ ∈ A′ such that there is g ≤ f ′ such that g ⊕ µ ⊩ b.
Hence, for µ ∈ A0, f

′ ⊕ µ ⊩ b. Let A1 = A′ \A0. It is easy to check that if µ ∈ A1

then f ′ ⊕ µ ⊩ ¬b. Exactly one of A0 and A1 is of measure-one, call the one of
measure-one B. Let p∗ = ⟨f ′, B⟩.

Claim 4.6.2. p∗ ≤∗ p and p∗ decides b.

Proof (Claim 4.6.2)
Clearly p∗ ≤∗ p. Let q ≤ p∗ be such that q decides b. Assume q is impure.

Without loss of generality, assume q ⊩ b. Then q ≤∗ p∗ + µ for some µ ∈ B. By
the property of (⋆(f ′)), f ′⊕µ ⊩ b. Thus, B = A0 and for every µ ∈ A0, f

′⊕µ ⊩ b.
By the density, p∗ ⊩ b.

■(Claim 4.6.2)
□

Forcing with P is equivalent to adding λj new Cohen subsets of λ+, while pre-
serving all cardinals and cofinalities.

5. forcing defined from two extenders

In this section we deal with the case where the forcing is defined from a sequence
of extenders whose sequence length 2. The proof of the Prikry property in this
section requires the Prikry property of the forcings defined sequences of extenders
whose lengths are 1 (i.e. the forcing in Section 4). In Section 7, we define a
forcing with any length of a sequence of extenders, including any finite lengths. The
structure of the proof of the Prikry property in this section can apply to forcings
defined from sequences of extenders whose sequences have finite lengths greater
than 1, assuming the Prikry property holds for forcings defined from sequences of
extenders of shorter finite lengths.

Definition 5.1. A forcing P∅
⟨E0,E1⟩ consists of conditions of the form p = ⟨p0, p1⟩,

where for n = 0, 1, pn = ⟨fpn, Apn⟩, fpn ∈ BEn(λ, λjn), d
p
n = dom(fpn) is an n-domain,

An ∈ En(d
p
n), and d

p
0 ⊆ dp1. A condition in P∅

⟨E0,E1⟩ is said to be pure.

Definition 5.2. A forcing P{0}
⟨E0,E1⟩ consists of conditions p = ⟨p0, p1⟩ such that

p0 ∈ P{0}
E0

and p1 ∈ P∅
E1

and dp0 ⊆ dp1.

Definition 5.3. A forcing P{1}
⟨E0,E1⟩ consists of a condition p = ⟨p0, p1⟩ such that

p0 = ⟨fp0 , A
p
0⟩, p1 = ⟨fp1 ⟩ such that

(1) fp1 ∈ BE1(λ, λj1), d
p
1 is a 1-domain with respect to E1.
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(2) fp1 (κ1) is 1-reflected for the sequence ⟨E0, E1⟩.
(3) fp0 ∈ Be0,1(f

p
1 )(λ1(f

p
1 ), λ

j
0,1(f

p
1 )) (Recall that λj0,1(f

p
1 ) is t01(f

p
1 (κ1)) where

jE1(t
0
1)(κ1) = λj0, e0,1(f

p
1 ) is h

0
1(f

p
1 (κ1)), which means that rge(fp0 ↾ je0,1(fp

1 )
(κ0)) ⊆

κ0.
(4) dp0 = dom(fp0 ) is a 0-domain with respect to e0,1(f

p
1 ).

(5) Ap0 ∈ e0,1(f
p
1 )(d

p
0).

Equivalently, p0 ∈ P∅
e0,1(f

p
1 )

and p1 ∈ P{0}
E1

.

Definition 5.4. A forcing P{0,1}
⟨E0,E1⟩ consists of a condition p = ⟨p0, p1⟩ such that

pn = ⟨fpn⟩ where

(1) fp1 ∈ BE1(λ, λj1) and d
p
1 is a 1-domain.

(2) fp1 (κ1) is 1-reflected with respect to ⟨E0, E1⟩.
(3) fp0 ∈ Be0,1(f

p
1 )(λ1(f

p
1 ), λ

j
0,1(f

p
1 )) (we recall some relevant notations in Defi-

nition 5.3).
(4) dp0 is a 0-domain with respect to e0,1(f

p
1 ).

Equivalently, p0 ∈ P{0}
e0,1(f

p
1 )

and p1 ∈ P{0}
E1

.

For a condition p which is described in Definition 5.3 or 5.4, it is automatic
that for each condition p, dp0 ∪ rp0 ⊆ dp1. For a ⊆ 2, we define ≤Pa

⟨E0,E1⟩
to be the

coordinate-wise ordering. Let P⟨E0,E1⟩ = ∪a⊆2Pa⟨E0,E1⟩. Define a direct extension

relation ≤∗ on P⟨E0,E1⟩ to be ∪a⊇2 ≤Pa
⟨E0,E1⟩

.

We sometimes abbreviate P⟨E0,E1⟩ as P, and abbreviate other forcings in a similar
fashion, i.e. we abbreviate Pa⟨E0,E1⟩ as Pa, written as supp(p) = a. Note that p is

pure if supp(p) = ∅. We say that p has support a if p ∈ Pa. We say p is impure if
supp(p) ̸= ∅.

Definition 5.5. Let p ∈ P, 0 ̸∈ supp(p) and µ ∈ Ap0 is squishable. then we
define the one-step extension of p by µ is a condition q, denoted by p + µ, with
supp(q) = a ∪ {0} such that

(1) q0 = ⟨fp0 ⊕ µ⟩.
(2) q1 = ⟨fp1 ⟩ if 1 ̸∈ supp(p), otherwise q1 = ⟨fp1 , B1⟩, where B1 = {µ1 ∈ Ap1 :

µ1 is ⟨fp0 , A
p
0⟩-squishable and dom(µ) ∪ rge(µ) ⊆ dom(µ1)}.

Definition 5.6. Let p ∈ P, 1 ̸∈ supp(p) and µ ∈ Ap1 is p0-squishable. Then one-step

extension of p by µ, denoted by p+ µ is a condition q ∈ Pa∪{1} such that

(1) fq1 = fp1 ⊕ µ.
(2) fq0 = µ ◦ fp0 ◦ µ−1.
(3) Aq0 = µ ◦ (Ap0)µ ◦ µ−1 (if Ap0 exists). Recall that (Ap0)µ = {τ ∈ Ap0 :

dom(τ) ∪ rge(τ) ⊆ dom(µ)}.

p is a 2-step extension of q if p = (q+µ)+µ′ for some objects µ and µ′, and their
one-step extensions are legitimate. We denote (q + µ) + µ′ by q + ⟨µ, µ′⟩. Finally,
for p, q ∈ P, we say that p ≤ q if p ≤∗ q, p is a direct extension of a 1 or 2-step
extension of q. Before we make an analysis further, we give a picture of a situation
in Definition 5.6, where p is a pure condition.
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no  measure-one set

There is a measure-one set There is a measure-one set

Figure 4. A one-step extension of a pure condition using a
1-object

In Figure 4, the first diagram shows how a pure condition p looks like, while the
second diagram is a condition which is a result from performing a 1-step extension
of p by a 1-object µ. The bold bars represent how high domains and ranges can be
(they do not represent that domains and ranges are initial segments of ordinals,
and in fact, they may not). From the figure, we see that after performing the one-
step extension, the first coordinate of the condition lies in Vκ1 (actually, it lives
in Vµ(λj

0)
). The wiggle lines represent how the maps of Cohen parts are like. The

straight lines in the first diagram indicate the map from a few crucial values of
dom(µ). We make an analysis on the ordering ≤ on P.
Lemma 5.7. (1) Let i ∈ {0, 1}. Let p be a condition such that i ̸∈ supp(p)

and q ≤∗ p. Suppose µ ∈ Aqi , µ is ⟨En : n ̸∈ supp(q)⟩-squishable. Then
q + µ ≤∗ p+ (µ ↾ dpi ).

(2) The ordering ≤ is transitive.
(3) Suppose p is pure and q is a 2-step extension of p. Then there are µi ∈ Api

for i = 0, 1 such that q = p+ ⟨µ0, µ1⟩ = ⟨µ1 ◦ µ0 ◦ µ−1
1 , µ1⟩.
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Proof. (1) We will show the case p is pure and i = 1 since other cases are
easier to prove. Let τ = µ ↾ dp1. First note that since q ≤∗ p, τ ∈ Ap1. It
is straightforward to check that since µ is q0-squishable, τ is p0-squishable.
Let r = q + µ. Since fq0 ≤ fp0 and µ ⊇ τ , fr0 = µ ◦ fq0 ◦ µ−1 ≤ τ ◦ fp0 ◦ τ−1.
Since Aq0 ↾ dp0 ⊆ Ap0 and µ ⊇ τ , µ ◦ (Aq0)µ ◦ µ−1 projects down to a subset
of τ ◦ (Ap0)τ ◦ τ−1. Finally, fr1 = fq0 ⊕ µ ≤ fp0 ⊕ τ , so r ≤∗ p+ τ .

(2) Let p ≤ q ≤ r. It is trivial if p ≤∗ q, otherwise, we apply (1) to show
that every object in q used in the path to extend q to p corresponds to the
restriction of the object to the corresponding domain in r, and hence, p is
a direct extension of some n-step extension of r, so ≤ is transitive.

(3) From the context, the 1-object we used to extend is always µ1. It is im-
portant to be aware of the objects we are allowed to use to extend. Note
that there are two possible ways to extend p using 2 objects. The first
way is to first extend p using a 0-object µ0 in Ap0, then extend p + µ0

further using a 1-object µ1 in a subset of Ap1, namely the set B1 de-
fined in Definition 5.5. The second way is to extend by a 1-object µ1

first, and then a 0-object µ1 ◦ µ0 ◦ µ−1
1 ∈ µ1 ◦ (Ap0)µ1 ◦ µ−1

1 . In both
cases, dom(µ0) ∪ rge(µ0) ⊆ dom(µ1). From the first way, we see that
from Definition 5.6, µ1 is ⟨fp0 , A

p
0⟩-squishable. In the second way, since

µ1 is ⟨fp0 , A
p
0⟩-squishable and dom(µ0) ∪ rge(µ0) ⊆ dom(µ1), it concludes

that µ1 is ⟨fp0 ⊕ µ0⟩-squishable. In both cases, the orders of the objects
to perform one-step extensions can be commuted. Since the 1-object we
use is always µ1, it is enough to show that the final conditions of the
extensions in both ways are equal at the 0-th coordinate. Equivalently,
µ1 ◦ (fp0 ⊕ µ0) ◦ µ−1

1 = (µ1 ◦ fp0 ◦ µ−1
1 ) ⊕ (µ1 ◦ µ0 ◦ µ−1

1 ). The fact that
dom(µ0) ∪ rge(µ0) ⊆ dom(µ1) and µ1 is p0-squishable implies that the
equation holds.

□

Proposition 5.8. Suppose that p ∈ P with 1 ∈ supp(p). Then P/p is factored into

P0 = Pe0,1(fp
1 )

and P1 = BE1(λ, λj1). P0 is λ1(f
p
1 )

++-c.c. and (P1,≤∗) is λ+-closed.

If 0 ∈ supp(p), then P0 is λ1(f
p
1 )

+-closed.

Proof. Note that for each condition in P0, its Cohen part lives in Be0,1(f
p
1 )(λ1(f

p
1 ), λ

j
0,1(f

p
1 )).

By a standard ∆-system argument, the poset Be0,1(f
p
1 )(λ1(f

p
1 ), λ

j
0,1(f

p
1 )) is λ1(f

p
1 )

++-

c.c., and is λ1(f
p
1 )

+-closed. If g0, g1 ∈ Be0,1(f
p
1 )(λ1(f

p
1 ), λ

j
0,1(f

p
1 )) are compatible,

say g ≤ g0, g1, B0 ∈ e0,1(f
p
1 )(dom(g0)), and B1 ∈ e0,1(f

p
1 )(dom(g1)), then we can

find B such that ⟨g,B⟩ ≤ ⟨g0, B0⟩, ⟨g1, B1⟩ by finding B ∈ e0,1(f
p
1 )(dom(g)) which

projects down to subsets of B0, B1.
□

Lemma 5.9. Let p ∈ P and 1 ̸∈ supp(p). Let f ′ ≤ fp1 with d′ = dom(f ′). Let
A′ ∈ E1(d

′), A′ projects down to a subset of Ap1. Assume that for each µ ∈ A′ with
µ ↾ dp1 being p0-squishable, we have t(µ) ≤∗ (p + (µ ↾ dp1))0 in Pe0,1(µ). Then there
is a condition q ≤∗ p such that

(1) fq1 ≤ f ′, and Aq1 projects down to A′.
(2) for τ ∈ Aq1 with µ = τ ↾ d′, (q + τ)0 = t(µ).
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Proof. Let d′ = dom(f ′). We may assume p is pure (the case supp(p) = {0} is
slightly simpler). Let p∗0 = jE1(µ 7→ t(µ))(mc1(d

′)). Write p∗0 = ⟨f∗0 , A∗
0⟩ and

d∗0 = dom(f∗0 ). Notice that

p∗0 ≤∗ jE1
(µ 7→ (p+ (µ ↾ dp1))0)(mc1(d

′))

= (jE1
(p) + mc1(d

′) ↾ jE1
(dp1))0

= (jE1
(p) + mc1(d

p
1))0

= ⟨mc1(d
p
1) ◦ jE1(f

p
0 ) ◦mc1(d

p
1)

−1,mc1(d
p
1) ◦ jE1 [A

p
0] ◦mc1(d

p
1)

−1⟩.

The last equation follows from Lemma 3.9. Exact calculations in Lemma 3.12
and Lemma 3.15 show that

mc1(d
p
1) ◦ jE1

[Ap0] ◦mc1(d
p
1)

−1 = Ap0

and

mc1(d
p
1) ◦ jE1

(fp0 ) ◦mc1(d
p
1)

−1 = fp0 .

Hence, p∗0 is a direct extension of p0.

Let f∗1 ∈ BE1(λ, λj1) with dom(f∗1 ) = d′ ∪ d∗0 =: d∗1 be such that f∗1 (γ) = f ′(γ) if
γ ∈ d′, otherwise f∗1 (γ) = 0.

Since d∗0 ⊆ d∗1, we have that

mc1(d
∗
1) ◦ jE1

(f∗0 ) ◦mc1(d
∗
1)

−1 = f∗0

and

mc1(d
∗
1) ◦ jE1

[A∗
0] ◦mc1(d

∗
1)

−1 = A∗
0.

Let A∗
1 be the collection of τ ∈ E1(d

∗
1) such that the following hold:

(1) τ ↾ d′ ∈ A′, which implies that τ ↾ dp0 ∈ Ap0.

(2) by letting µ = τ ↾ d′, we have that τ ◦f∗0 ◦τ−1 = f
t(µ)
0 and τ ◦ (A∗

0)τ ◦τ−1 =

A
t(µ)
0 .

Then A∗
1 is of measure-one. Let q = ⟨p∗0, ⟨f∗1 , A∗

1⟩⟩. The condition q is as required.
□

Theorem 5.10. P has the Prikry property.

Proof. Let b be a Boolean value, and p ∈ P. Let B1 = BE1(λ, λj1). We will divide
into two cases.

CASE I: 1 ∈ supp(p). Note that θ := |Pe0,1(fp
1 )
| < κ1. Enumerate Pe0,1(fp

1 )
as

{tα : α < θ}. Build a decreasing sequence {f1,α : α ≤ θ} recursively such that

(1) f1,0 = fp1 .
(2) for α ≤ θ limit, let f1,α = ∪β<αf1,β .
(3) for α = β + 1, if there is g ≤ f1,β such that t⌢β ⟨g⟩ decides b, then t⌢β ⟨f1,α⟩

decides b.

The construction is straightforward, and can be proceeded until and including
the stage θ since B1 is λ+-closed and θ < κ1. Let f ′1 = f1,θ. Note that e0,1(f

p
1 ) =

e0,1(f
′
1) since f

p
1 (κ1) = f ′1(κ1). We record the following property about f ′1 (call it

(⋆(f ′1))):



FORCING WITH OVERLAPPING SUPERCOMPACT EXTENDERS 21

(⋆(f ′
1)) For each t ∈ Pe0,1(fp

1 )
, if there is g ≤ f ′1 such that t⌢⟨g⟩ decides b, then
t⌢⟨f ′1⟩ decides b.

Let Ġ be the canonical name for a generic object of the forcing Pe0,1(fp
1 )
. By the

Prikry property for a forcing defined from one extender, let p∗0 ≤∗ p0 such that p∗0
decides the following statement:

φ ≡ ∃p′ ∈ Ġ(p′⌢⟨f ′1⟩ ∥ b).

If the decision is positive, we may extend p∗0 further so that exactly one of the
following holds:

• p∗0 ⊩ ∃p′ ∈ Ġ(p′⌢⟨f ′1⟩ ⊩ b).

• p∗0 ⊩ ∃p′ ∈ Ġ(p′⌢⟨f ′1⟩ ⊩ ¬b).
If the decision is negative, by extending further, assume p∗0 is such that p∗0 ⊩

∄p′ ∈ Ġ(p′⌢⟨f ′1⟩ ⊩ b). Let p∗ = p∗0
⌢⟨f ′1⟩.

Claim 5.10.1. p∗ ≤∗ p and p∗ decides b.

Proof (Claim 5.10.1)
Clearly p∗ ≤∗ p. Let q ≤ p∗ be a condition deciding b, so q0 ≤ p∗0. Without loss

of generality, assume q ⊩ b. By ⋆(f ′1), q
⌢
0 ⟨f ′1⟩ ⊩ b. We claim that p∗0 ⊩ φ. Suppose

not, let G be a generic for Pe0,1(fp
1 )

containing q0, so p
∗
0 ∈ G. Then there is no

r ∈ G such that r⌢⟨f ′1⟩ decides b, but q⌢0 ⟨f ′1⟩ ⊩ b, so we reach a contradiction.
Similar proof eliminates the case of positive decision with respect to the Boolean

value ¬b. Hence, we conclude that p∗0 ⊩ ∃p′ ∈ Ġ(p′⌢⟨f∗1 ⟩ ⊩ b). We now show that
p∗ ⊩ b. Suppose not, let r ≤ p∗ be such that r ⊩ ¬b. By the property (⋆(f ′1)),
r⌢0 ⟨f∗1 ⟩ ⊩ ¬b. Let G be a generic containing r0, so containing p∗0, find r

′ ∈ G such
that r′⌢⟨f∗1 ⟩ ⊩ b. Now if r̃ ≤ r′, r0 and r̃ ∈ G, we have that r̃⌢⟨f∗1 ⟩ ⊩ b,¬b, which
is a contradiction. Hence, the proof is done.

■(Claim 5.10.1)
CASE II: 1 ̸∈ supp(p). Let N ≺ Hθ for some sufficiently large regular cardinal

θ such that N is internally approachable in the way described as in Theorem 4.6,
witnessed by a sequence of elementary submodels of length κ1, |N | = λ, <κ1N ⊆ N .

, λ, λj1, b, p,P ∈ N , fp1 , λ ⊆ N , and there is f ′1 ≤ fp1 be N -generic over B1, and

d′1 = dom(f ′1) = N ∩ λj1. The construction of such N and f ′1 is similar to the proof
in Theorem 4.6. Let A′

1 ∈ E1(d
′
1), A

′
1 ↾ dp1 ⊆ Ap1. For µ ∈ A′

1, dom(µ) ⊆ d′1,
rge(µ) ⊆ λ, and |µ| < κ1, so µ ∈ N .

Fix µ ∈ A′
1. Define Dµ as the collection of f ∈ B1 such that dom(µ) ⊆ dom(f),

and for every t ∈ Pe0,1(µ), if there is g ≤ fp1 ⊕ µ such that t⌢⟨g⟩ decides b, then
t⌢⟨f ′ ⊕ µ⟩ also decides b.

Claim 5.10.2. Dµ is open dense below fp1 and is in N .

Proof (5.10.2)
Clearly Dµ is open. Since Dµ is defined using parameters in N , Dµ ∈ N .

To show density of Dµ, let f ≤ fp1 . We may assume dom(µ) ⊆ dom(f). Note
that ν := |Pe0,1(µ)| < κ1. Enumerate Pe0,1(µ) as {tα : α < ν}. Build a sequence
⟨f1,α : α ≤ ν⟩ such that

(1) f1,0 = f .
(2) for α ≤ ν limit, let f1,α = ∪β<αf1,β .
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(3) for α = β+1, find f1,α ≤ f1,β such that if there is a g ≤ f1,β ⊕µ such that
tα
⌢⟨g⟩ decides b, then tα⌢⟨f1,α ⊕ µ⟩ decides b.

Note that B1 is λ+-closed We can apply the argument from the proof of Claim
4.6.1 for a construction on the successor stages. Then f∗1 := f1,ν ∈ Dµ.

■(5.10.2)
By a genericity of f ′1, we have that f ′1 ∈ Dµ. We record the following property

for f ′1 (and call it (⋆(f ′1))):

(⋆(f ′
1)) For each µ ∈ A′

1 and t ∈ Pe0,1(µ), if there is g ≤ f ′1 ⊕ µ such that t⌢⟨g⟩
decides b, then so is t⌢⟨f ′1 ⊕ µ⟩.

Fix µ ∈ A′
1. Let Ġ be the canonical name for the forcing Pe0,1(µ). By the Prikry

property for a forcing defined from one extender, let t(µ) ≤∗ (p + (µ ↾ dp1))0 such
that t(µ) decides the following statement:

φ ≡ ∃t ∈ Ġ(t⌢⟨f ′1 ⊕ µ⟩ ∥ b).

We may extend t(µ) further under the direct extension so that exactly one of
the following decisions on t(µ) holds:

• t(µ) ⊩ ∃t ∈ Ġ(t⌢⟨f ′1 ⊕ µ⟩ ⊩ b).

• t(µ) ⊩ ∃t ∈ Ġ(t⌢⟨f ′1 ⊕ µ⟩ ⊩ ¬b).
• t(µ) ⊩ ∄t ∈ Ġ(t⌢⟨f ′1 ⊕ µ⟩ ∥ b).

Shrink A′
1 so that every µ ∈ A′

1 makes the same decision. Apply Lemma 5.9 for
f ′ := f ′1 ≤ fp1 , A

′ := A′
1 ∈ E1(dom(f ′1)) and t(µ) for each µ ∈ A′

1, to find q ≤∗ p
such that

(1) fq1 ≤ f ′1.
(2) For τ ∈ Aq1 with µ = τ ↾ d′1, (q + τ)0 = t(µ).

Claim 5.10.3. q decides b.

Proof (Claim 5.10.3)
Let r ≤ q such that r decides b. Without loss of generality, assume r ⊩ b. and

r ≤ q + τ for some τ ∈ Aq1. Let µ = τ ↾ d′1. Hence, r0 ≤ t(µ). Since fr1 ≤ f ′1 ⊕ µ,
by (⋆(f ′1)), r

⌢
0 ⟨f ′1 ⊕ µ⟩ ⊩ b. A proof which is similar to the proof in case I of

Claim 5.10.1 shows that t(µ) ⊩ ∃t ∈ Ġ(t⌢⟨f∗1 ⟩ ⊩ b). Hence, for every τ ′ ∈ Aq1 with

µ′ = τ ′ ↾ d′1, t(µ
′) ⊩ ∃t ∈ Ġ(t⌢⟨f∗1 ⊕ µ⟩ ⊩ b). Again, an argument which is similar

to the argument in the proof in case I of Claim 5.10.1 shows that t(µ′)⌢⟨f ′1⊕µ′⟩ ⊩ b.
Thus, by the density, q ⊩ b.

■(Claim 5.10.3)
□

6. forcing with countably infinite extenders

Assume the result from Theorem 2.14 for η = ω. As mentioned in Section 5, we
use the Prikry property of the forcings defined from sequences of extenders of finite
lengths.

Definition 6.1. A forcing P⟨En:n<ω⟩ consists of conditions p, and a support of p,
which is supp(p) ∈ [ω]<ω, of the form p = ⟨pn : n < ω⟩, where
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pn =

{
⟨fn⟩ if n ∈ supp(p),

⟨fn, An⟩ otherwise,

and for each n < ω such that supp(p) \ (n+1) ̸= ∅, let n∗ = min(supp(p) \ (n+1)),
otherwise, n∗ is undefined, then the following hold:

(1) for each n where n∗ does not exist,
• if n ∈ supp(p) (which is exactly when n = max(supp(p))), then
fn ∈ BEn(λ, λjn). dn = dom(fn) is an n-domain with respect to
En, and if n > 0, fn(κn) is n-reflected for the sequence ⟨Em : m ∈
[max{0,max(supp(p) ∩ n)}, n)⟩.

• if n ̸∈ supp(p) (which is exactly when n > max(supp(p))),
– fn ∈ BEn(λ, λjn).
– let dn = dom(fn) is an n-domain with respect to En, and An ∈
En(dn).

(2) for each n where n∗ exists,
• if n ∈ supp(p) (which is exactly when n = max(supp(p) ∩ n∗)),

then fn ∈ Ben,n∗ (fn∗ )(λn∗(fn∗), λjn,n∗(fn∗)), dn := dom(fn) is an n-
domain with respect to en,n∗(fn∗), and if n > 0, fn(κn) is n-reflected
for the sequence ⟨em,n∗(fn∗) : m ∈ [max{0,max(supp(p) ∩ n)}, n)⟩.
Recall that λn∗(fn∗) = sn∗(fn∗(κn∗)) where jEn∗ (sn∗)(κn∗) = λ,

λjn,n∗(fn∗) = tnn∗(fn∗(κn∗)) where jEn∗ (t
n
n∗)(κn∗) = λjn and λjn =

jEn
(λ), and en,n∗(fn∗) = hnn∗(fn∗(κn∗)).

• if n ̸∈ supp(p) (which is exactly when n ∈ (max{max(supp(p) ∩
n∗), 0}, n∗)),

– fn ∈ Ben,n∗ (fn∗ )(λn∗(fn∗), λjn,n∗(fn∗)), and dn := dom(fn) is an
n-domain with respect to en,n∗(fn∗).

– rge(fpn ↾ jen,n∗ (fn∗ )(κn)) ⊆ κn.

– An ∈ en,n∗(fn∗)(dn).
(3) for max(supp(p)) ≤ m < n < ω, dm ⊆ dn.
(4) if m < ω is such that m∗ exists, then for each m < n < m∗, dm ⊆ dn.

A condition p is pure if supp(p) = ∅. Otherwise, p is said to be impure.

Definition 6.2. For p, q ∈ P. We say that p is a direct extension of q, denoted by
p ≤∗ q if

(1) supp(p) = supp(q).
(2) for all n < ω, fpn ≤ fqn.
(3) for n ̸∈ supp(p), Apn ↾ dqn ⊆ Aqn.

Notice that if p ≤∗ q, then for n ∈ supp(p), fpn(κn) = fqn(κn). Thus, λn(f
p
n) =

λn(f
q
n), and for m < n, λjm,n(f

p
n) = λjm,n(f

q
n), and em,n(f

p
n) = em,n(f

q
n).

Definition 6.3. Let p ∈ P and n ̸∈ supp(p). Let µ ∈ Apn be ⟨pm : m ∈
[max{0,max(supp(p) ∩ n)}, n)⟩-squishable. The one-step extension of p by µ is
the condition q, denoted by p+ µ such that

(1) supp(q) = supp(p) ∪ {n}.
(2) for m < max{max(supp(p) ∩ n), 0}, qm = pm.
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(3) if n∗ = min(supp(p) \ (n+ 1)) exists, then for m ∈ (n, n∗), qm = ⟨fpm, Bm⟩
whereBm = {τ ∈ Apm : dom(µ)∪rge(µ) ⊆ dom(τ) and τ is ⟨fpn, Apn⟩-squishable},
and for m ≥ n∗, qm = pm.

(4) if n∗ does not exist, then for m > n, qm = ⟨fpm, Bm⟩ where Bm = {τ ∈
Apm : dom(µ) ∪ rge(µ) ⊆ dom(τ) and τ is ⟨fpn, Apn⟩-squishable}.

(5) fqn = fpn ⊕ µ.
(6) for m ∈ [max{max(supp(p) ∩ n), 0}, n), fqm = µ ◦ fpm ◦ µ−1 and Aqm =

µ ◦ (Apm)µ ◦ µ−1.

0 1 2 3 4
No measure-one set May or may not have a

measure-one set 
There is a measure-one set

0 1 2 3 4
No measure-one set The measure-one set (if

exists) is the same
There is a measure-one set There is a measure-one setNo measure-one set 

There is a measure-one set There is a measure-one set

Figure 5. A one-step extension of a condition p with
{1} ⊆ supp(p) ⊆ {0, 1} using a 3-object µ

We exemplify on how one-step extension works. From Figure 5, we start with
a condition p with {1} ⊆ supp(p) ⊆ {0, 1}, which is exhibited at the upper-half
of the figure. Each pn is either ⟨fn⟩ or ⟨fn, An⟩. Fix a 3-object µ. The condition
p+µ is shown at the lower-half of the figure. The n-th columns show how the n-th
coordinate of the conditions look like. Thick bars represent the heights of domains
and ranges can be (note that they do not represent that domains and ranges are
initial segments of ordinals, and in fact, they may not). The solid arrows represents
maps of Cohen functions lying in the condition on the coordinates which are in
the support of p, dash-line arrows represent otherwise. We distinguish f0 by a
dot-line arrow, since we 0 may or may not be in the support of p. The gray line in
the upper-half figure emphasizes the fact that p0 ∈ Vκ1 . (p + µ)0 is just p0, so it
remains unchanged. p1 and p2 are now conjugated by µ. As a result, (p+ µ)1 and
(p+ µ)2 live in Vκ3

(which are emphasized by the upper gray line in the lower-half
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figure). f3 is (partially) overwritten by µ. For n > 4, the measure-one set shrinks
to make sure that every n-object keeps information about µ in a certain way.

We define an n-step extension recursively as follows: p is an n-step extension of
q for n > 1 if p = (q + ⟨µ0, . . . , µn−2⟩) + µn−1, under the condition that for i < n,
µi is legitimate to perform a 1-step extension into q+ ⟨µ0, . . . , , µi−1⟩. Define p ≤ q
if p is a direct extension of some n-step extension of q (n can be 0). The proof of
the following lemma is similar to the proof in Lemma 5.7, except that our forcing
is more complicated.

Lemma 6.4. (1) Let n < ω. Let p be a condition such that n ̸∈ supp(p) and
q ≤∗ p. Suppose µ ∈ Aqn and q + µ is valid. Then q + µ ≤∗ p+ (µ ↾ dpn).

(2) The ordering ≤ is transitive.
(3) Suppose p is pure and q is a n-step extension of p at coordinates k0 < · · · <

kn−1. Then there are µi ∈ Apki for i < n such that q = p+ ⟨µ0, . . . , µn−1⟩.
As a consequence, the order of the objects we use to extend p to q can be
commuted modulo squishing.

We explain the meaning of (3) in Lemma 6.4 by giving an example. Suppose q is

a 3-step extension of p with τ2, τ0, and τ1, respectively, where τ2 ∈ Apk2 , τ0 ∈ Ap+τ2k0
,

τ1 ∈ A
p+⟨τ2,τ0⟩
k1

, and k0 < k1 < k2. Let µ2 = τ2. Then one can check that for

i = 0, 1, τi is µ2 ◦ µi ◦ µ−1
2 for some µi ∈ Apki . With some calculations, it is true

that q = p+ ⟨µ0, µ1, µ2⟩. In fact, for every permutation σ of {k0, k1, k2}, there is a
unique way to perform three 1-step extensions of p where the 1-step extensions are
performed in the order of σ. In our example, if σ(0) = 1, σ(1) = 2, and σ(2) = 0,
one can see that q = p+ ⟨µ1, µ2, µ1 ◦ µ0 ◦ µ−1

1 ⟩.

Lemma 6.5. P is λ++-c.c.

Proof. Let {pα : α < λ++} be a collection of conditions in P. We first show that we
may assume without loss of generality that pα is pure for all α. Since 2ℵ0 < λ++,
we may shrink the set and assume that all pαs’ have the same supports, say a.
Suppose a ̸= ∅, let n = max(a). Hence, for α < λ++, pα ↾ n ∈ Vκn

. Shrink the
set so that pα ↾ nare all the same for all α. As a consequence, we can assume pα

is pure for all α. For each n < ω, dp
α

n ∈ [λjn]
λ. By GCH, we shrink the set so that

⟨dpαn : α < λ++⟩ forms a ∆-system. Let r be the root. Since |r| = λ, we shrink the

collection so that fp
α

n ↾ r are all the same. Thus, fp
α

n and fp
β

n are all compatible
for n < ω and α, β < λ++. Measure-one sets are compatible, hence, there is a pair
of compatible conditions.

□

If p ∈ P and n ∈ supp(p), then P/p factors into two posets P0 = ((P/p) ↾
n)⟨em,n(f

p
n)):m<n⟩ and P1 = (P/p) \ n.

Lemma 6.6. P0 is λn(f
p
n)

++-c.c. If n + 1 ̸∈ supp(p), (P1,≤∗) is κn+1-closed. If
n+ 1 ∈ supp(p), (P1,≤∗) is λn+1(f

p
n+1)

+-closed.

Proof. If n+1 ̸∈ supp(p), then the part that makes P1 has the lowest closure is the
n + 1th measure-one set: the ≤∗ relation on n-th coordinate is θ-closed for some
θ > κn+1. The correspond ultrafilter is κn+1-complete, so (P1,≤∗) is κn+1-closed.

□
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Lemma 6.7. Let p ∈ P and n ̸∈ supp(p). Let f ′ ≤ fpn with d′ = dom(f ′). Assume
that if n∗ = min(supp(p) \ (n + 1)) exists, A′ ∈ en,n∗(fn∗)(d′), and if n∗ does not
exist, A′ ∈ En(d

′). Fix fm for m > n such that fm ≤ fpm and dm := dom(fm) ⊇ d′,
and if n < m < m′, then dom(fm) ⊆ dom(fm′). Suppose that for each µ ∈ A′, there
is a condition t(µ) ≤∗ (p+ (µ ↾ dpn)) ↾ n, and there is r⃗(µ) = ⟨fm, Am(µ) : m > n⟩
such that Am(µ) is of measure-one with respect to dm. Then there is a condition
q ≤∗ p such that

(1) fqn ≤ f ′ and Aqn projects down to A′.
(2) for τ ∈ Aqn with µ = τ ↾ d′,

• (q + τ) ↾ n = t(µ).
• (q + τ) \ (n+ 1) ≤∗ r⃗(µ).

Proof. The proof is modified from Lemma 5.9. We will only point out key differ-
ences. Assume p is pure for simplicity. Form > n, let Am = △µ∈A′Am(µ), so Am ∈
Em(dom(fm)). One can modify the proof of Lemma 5.9 to construct q ↾ (n + 1).
For m > n, define qm = ⟨gm, Bm⟩ such that dom(gm) = dom(fm) ∪ dom(fqn),
gm(γ) = fm(γ) if γ ∈ dom(fm), otherwise, gm(γ) = 0, Bm ∈ Em(dom(gm)) and
Bm projects down to a subset of Am and Apm. Fix τ ∈ Aqn and µ = τ ↾ d′ andm > n.
Then (q + τ)m = ⟨gm, Cm⟩ where Cm ⊆ {χ ∈ Aqm : dom(τ) ∪ rge(τ) ⊆ dom(χ)}.
Clearly gm ≤ fm. For χ ∈ Cm, dom(µ) = dom(τ ↾ d′) ⊆ dom(χ ↾ d′). Since
rge(µ) = rge(τ ↾ d′), it is a subset of dom(χ). Since d′ ⊇ λ, rge(µ) ⊆ dom(χ ↾ d′).
Since d′ ⊆ dm and χ ↾ dm ∈ Am we have that χ ↾ dm ∈ Am(µ). Hence,
(q + τ)m ≤∗ ⟨fm, Am(µ)⟩.

□

Theorem 6.8. P has the Prikry property.

Proof. Let b be a Boolean value. We will start by proving the Prikry property for
a pure condition p ∈ P. Later, we will explain how to modify the proof for impure
conditions. Our goal is to build a ≤∗-decreasing sequence ⟨pn : n < ω⟩ such that
p0 ≤∗ p and if q ≤ p, q decides b and max(supp(q)) = n, then pn decides b. Then
we claim at the end of the proof that by letting p∗ to be a ≤∗-lower bound of
⟨pn : n < ω⟩, then p∗ decides b. We give a convention for the proof. Let p be a
pure condition. If there is q ≤∗ p such that q decides b, then we are done. Suppose
not. Let Bn = BEn(λ, λjn). If f ∈ Bn and µ is an n-object with respect to dom(f),
then f ⊕ µ ∈ Bn.

Construction of p0: Let

Q0 = {⟨fn : n < ω⟩ ∈
∏
n<ω Bn | ⟨dom(fn) : n < ω⟩ is ⊆-increasing }

where
∏
n<ω Bn is a full support product, and

R0 = {(f, r⃗) ∈ B0 × (P⟨En:n>0⟩,≤∗) : dom(f) ⊆ dom(fr1 )},

where the first coordinate of r⃗ is ⟨fr1 , Ar1⟩. By adapting the proof in Theorem
4.6, we find

(1) N0 ≺ Hθ for some sufficiently large regular cardinal θ > λ̄jω such that
N0 is internally approachable in the way described as in Theorem 4.6,
witnessed by a sequence of elementary submodels of length κ0, |N0| = λ
and <κ0N0 ⊆ N0. In addition, λ, b, p,P ∈ N0, λ, d

p
0 ⊆ N0, and for all n < ω,

λjn ∈ N0

(2) ⟨f0n : n < ω⟩ which is (N0,Q0)-generic, and ⟨f0n : n < ω⟩ ≤Q0 ⟨fpn : n < ω⟩.
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(3) d00 = N0 ∩ λj0.
The construction is similar to the explanation at the beginning of Theorem 4.6.

Let A0
n ∈ En(d

0
n) be a measure-one set projecting down to Apn for all n. For µ ∈ A0

0,
|µ| < κ0, dom(µ) ⊆ d0n and rge(µ) ⊆ λ, so µ ∈ N0. For µ ∈ A0

0, define Dµ as the
collection of (f, r⃗) ∈ R0 such that dom(µ) ⊆ dom(f) and if there are g ≤ f ⊕µ and
r⃗′ ≤∗ r⃗ such that ⟨g⟩⌢r⃗′ decides b, then ⟨f ⊕ µ⟩⌢r⃗ decides b the same way. Let
π : R0 → Q0 be the natural projection and D′

µ = π[Dµ].

Claim 6.8.1. Dµ is open dense below ⟨fp0 ⟩⌢⟨pn : n > 0⟩ and Dµ ∈ N0. As a
consequence, D′

µ is an open dense set and D′
µ ∈ N0.

Proof (Claim 6.8.1)
It is easy to check that Dµ is open. Dµ is defined using R0, µ, and b, so

Dµ ∈ N0. It remains to show that Dµ is dense below ⟨fp0 ⟩⌢⟨pn : n > 0⟩. Let
⟨f⟩⌢r⃗ ≤R0 ⟨fp0 ⟩⌢⟨pn : n > 0⟩. By the density, assume dom(µ) ⊆ dom(f). If there
are g ≤ f ⊕ µ and r⃗′ ≤∗ r⃗ such that ⟨g⟩⌢r⃗′ decides b, let g′ be a function with
dom(g′) = dom(g) and g′(γ) = f(γ) for γ ∈ dom(f), otherwise g′(γ) = g(γ), then
⟨g′⟩⌢r⃗′ ∈ Dµ and ⟨g′⟩⌢r⃗′ ≤R0

⟨f⟩⌢r⃗.
■(Claim 6.8.1)

By genericity, we have that ⟨f0n : n < ω⟩ ∈ D′
µ. Find A0

n(µ) ∈ En(d
0
n) for n > 0

such that ⟨f00 ⟩⌢⟨⟨f0n, A0
n(µ)⟩ : n > 0⟩ ∈ Dµ. For n > 0, define (A0

n)
∗ = A0

n ∩
△µ∈A0

0
A0
n(µ). By Lemma 3.11, (A0

n)
∗ ∈ En(d

0
n). Let q0 = ⟨f00 , A0

0⟩⌢⟨⟨f0n, (A0
n)

∗⟩ :
n > 0⟩. For µ ∈ A0

0, n > 0, we have that Aq
0+µ
n ⊆ {τ ∈ (A0

n)
∗ : dom(µ) ∪ rge(µ) ⊆

dom(τ)} ⊆ A0
n(µ). Thus, we have the following property for q0 (call it (⋆(q0)):

(⋆(q0)) For µ ∈ A0
0, if there are f ≤ (q0 + µ)0 (which is f00 ⊕ µ), and

r⃗ ≤∗ (q0 + µ) \ 1 such that ⟨f⟩⌢r⃗ decides b, then q0 + µ decides b the same way.

Let

A0 = {µ ∈ A0
0 : ∃f ≤ f00 ⊕ µ(∃r⃗ ≤∗ (q0 + µ) \ 1(⟨f⟩⌢r⃗ ⊩ b))}

A1 = {µ ∈ A0
0 \A0 : ∃f ≤ f00 ⊕ µ(∃r⃗ ≤∗ (q0 + µ) \ 1(⟨f⟩⌢r⃗ ⊩ ¬b))}

A2 = A0
0 \ (A0 ∪A1).

Note that µ ∈ A0 implies that q0 + µ ⊩ b, and µ ∈ A1 implies that q0 + µ ⊩ ¬b.
There exists unique i = {0, 1, 2} such that Ai is of measure-one, call it i0. Let

p0 = ⟨f00 , Ai0⟩⌢⟨⟨f0n, (A0
n)

∗⟩ : n > 0⟩.

We now show that if there is q ≤ p0 with supp(q) = {0} and q decides b, then
p0 decides b. Let q be such a witness, and without loss of generality, suppose that

q ⊩ b and q ≤∗ p0 + µ for some µ ∈ Ap
0

0 . Then fq0 ≤ f00 ⊕ µ = (q0 + µ)0 and
q \ 1 ≤∗ (p0 + µ) \ 1 = (q0 + µ) \ 1. By ⋆(q0), we have that q0 + µ ⊩ b and µ ∈ A0.
This means i0 = 0. For every extension r of p0 with 0 ∈ supp(r), we have r ≤ p+µ′

for some µ′ ∈ A0. With the property ⋆(q0), we have that q0 + µ′ ⊩ b, and hence,
r ⊩ b. By the density, p0 ⊩ b.

Construction of pm+1:
Let

Qm+1 = {⟨fn : n > m⟩ ∈
∏
n>m Bn | ⟨dom(fn) : n > m⟩ is ⊆-increasing}
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where
∏
n>m Bn is a full support product, and

Rm+1 = {(f, r⃗) ∈ Bm+1 × (P⟨En:n>m+1⟩,≤∗) : dom(f) ⊆ dom(frm+2)},

where the first coordinate of r⃗ is ⟨frm+2, A
r
m+2⟩. By adapting the proof in The-

orem 4.6, we find

(1) Nm+1 ≺ Hθ for some sufficiently large regular cardinal θ > λ̄jω such that N0

is internally approachable in a way described as in Theorem 4.6, witnessed
by a sequence of elementary submodels of length κm+1, |Nm+1| = λ and
<κm+1Nm+1 ⊆ Nm+1. Also, λ, b, pm,P ∈ Nm+1, λ, f

pm

m+1 ⊆ Nm+1, and for

all n > m, λjn ∈ Nm+1

(2) ⟨fm+1
n : n > m⟩ which is (Nm+1,Qm+1)-generic, and ⟨fm+1

n : n > m⟩ ≤Qm+1

⟨fpmn : n > m⟩.
(3) dm+1

n = dom(fm+1
n ) = Nm+1 ∩ λjn for all n > m. In particular, dm+1

m+1 ⊆
Nm+1.

The construction is similar to the explanation at the beginning of Theorem 4.6.
Let Am+1

n ∈ En(d
m+1
n ) be a measure-one set projecting down to Ap

m

n for all n > m.
Since for µ ∈ Am+1

m+1, |µ| < κm+1, dom(µ) ⊆ dm+1
m+1 and rge(µ) ⊆ λ, so µ ∈ Nm+1.

Fix µ ∈ Am+1
m+1. Let Pm+1,µ = P⟨en,m+1(µ):n≤m⟩. Note that |Pm+1,µ| < κm+1. Let

⟨tα : α < |Pm+1,µ|⟩ be an enumeration in Nm+1 of conditions in Pm+1,µ. Define
Dµ as the collection of (f, r⃗) ∈ Rm+1 such that dom(µ) ⊆ dom(f) and for each
α < |Pm+1,µ|, if there are a function g ≤ f ⊕ µ and r⃗′ ≤∗ r⃗ such that t⌢α ⟨g⟩⌢r⃗′
decides b, then t⌢α ⟨f ⊕µ⟩⌢r⃗ decides b the same way. Let π : Rm+1 → Qm+1 be the
natural projection and D′

µ = π[Dµ].

Claim 6.8.2. Dµ is open dense below ⟨fp
m

m+1⟩⌢⟨pmn : n > m+ 1⟩ and Dµ ∈ Nm+1.
As a consequence, D′

µ is an open dense set and D′
µ ∈ Nm+1.

Proof Claim (6.8.2)
It is easy to check that Dµ is open. Dµ is defined using Rm+1, µ, and b, so

Dµ ∈ Nm+1. It remains to show that Dµ is dense below ⟨fp
m

m+1⟩⌢⟨pn : n > m+ 1⟩.
Let ⟨f⟩⌢r⃗ ≤Rm+1 ⟨fp

m

m+1⟩⌢⟨pn : n > m+1⟩. By density, assume dom(µ) ⊆ dom(f).
Build ⟨(fm+1,α, r⃗m+1,α) : α ≤ |Pm+1,µ|⟩ as follows:

(1) fm+1,0 = f and r⃗m+1,0 = r⃗.
(2) If α is limit, let (fm+1,α r⃗m+1,α) be a Rm+1-lower bound of ⟨(fm+1,β , r⃗m+1,β) :

β < α⟩.
(3) For α < |Pm+1,µ|, ask whether there are g ≤ fm+1,α ⊕ µ and r⃗′ ≤∗ r⃗m+1,α

such that t⌢α ⟨g⟩⌢r⃗′ decides b. If the answer is positive, let fm+1,α be
a function with dom(fm+1,α) = dom(g), fm+1,α(γ) = fm+1,α(γ) if γ ∈
dom(fm+1,α), otherwise fm+1,α+1(γ) = g(γ), and let r⃗m+1,α+1 = r⃗′. If the
answer is negative, let fm+1,α+1 = fm+1,α and r⃗m+1,α+1 = r⃗m+1,α.

The argument at the successor stages is similar to the argument in Claim 4.6.1.
The construction proceeds to the end since Rm+1 is κm+1-closed. Let g

′ = fm+1,|Pm+1,µ|
and r⃗′ = r⃗m+1,|Pm+1,µ|. Then ⟨g′⟩⌢r⃗′ ∈ Dµ and ⟨g′⟩⌢r⃗ ≤Rm+1

⟨g⟩⌢r⃗.
■Claim (6.8.2)

Thus, by genericity, we have that ⟨fm+1
n : n > m⟩ ∈ D′

µ. Find Am+1
n (µ) ∈

En(d
m+1
n ) for n > m+ 1 such that ⟨fm+1

m+1 ⟩⌢⟨⟨fm+1
n , Am+1

n (µ)⟩ : n > m+ 1⟩ ∈ Dµ.

For n > m+ 1, let (Am+1
n )∗ = Am+1

n ∩ △µ∈Am+1
m+1

Am+1
n (µ). By Lemma 3.11,
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(Am+1
n )∗ ∈ En(d

m+1
n ). Let qm+1 = pm ↾ (m+1)⌢⟨fm+1

m+1 , A
m+1
m+1⟩⌢⟨⟨fm+1

n , (Am+1
n )∗⟩ :

n > m + 1⟩. For µ ∈ Am+1
m+1, n > m + 1, we have that Aq

m+1+µ
n ⊆ {τ ∈ (Am+1

n )∗ :

dom(µ) ∪ rge(µ) ⊆ dom(τ)} ⊆ Am+1
n (µ). Thus, we have the following property for

qm+1 (call it (⋆(qm+1)):

(⋆(qm+1)): For µ ∈ Am+1
m+1, for t ∈ Pm+1,µ, if there are f ≤ (qm+1 + µ)m+1

(which is fm+1
m+1 ⊕ µ), and r⃗ ≤∗ (qm+1 + µ) \ (m+2)) such that t⌢⟨f⟩⌢r⃗ decides b,

then t⌢(qm+1 + µ) \ (m+ 1) decides b the same way.

Fix µ ∈ Am+1
m+1. Let Ġ be the canonical name for the generic object for Pm+1,µ. By

the induction hypothesis, find t(µ) ≤∗ pm ↾ (m + 1) which decides the following
sentence:

φ ≡ ∃t ∈ Ġ(t⌢(qm + µ) \ (m+ 1) ∥ b).

Let

A0 = {µ ∈ Am+1
m+1 : t(µ) ⊩ ∃t ∈ Ġ(t⌢(qm+1 + µ) \ (m+ 1) ⊩ b)}

A1 = {µ ∈ Am+1
m+1 \A0 : t(µ) ⊩ ∃t ∈ Ġ(t⌢(qm+1 + µ) \ (m+ 1) ⊩ ¬b)}

A2 = Am+1
m+1 \ (A0 ∪A1).

There exists unique i ∈ {0, 1, 2} such that Ai is of measure-one. Let im+1 be as
such. We now apply Lemma 6.7 to the following setting: the “p” in Lemma 6.7 is
pm, n = m + 1, f ′ = fm+1

m+1 , A
′ = Aim+1

, t(µ) and r⃗(µ) = ⟨fm+1
n , Am+1

n (µ) : n >

m+ 1⟩ for each µ ∈ Aim+1
as described earlier, to find pm+1 ≤∗ pm such that

(1) fp
m+1

m+1 ≤ fm+1
m+1 and Ap

m+1

m+1 projects down to Aim+1
.

(2) for τ ∈ Ap
n+1

m+1 with µ = τ ↾ dm+1
m+1,

• (pm+1 + τ) ↾ (m+ 1) = t(µ).
• (pm+1 + τ) \ (m+ 2) ≤∗ r⃗(µ).

We now show that if there is q ≤ pm+1 with max(supp(q)) = m+1 and q decides
b, then pm+1 decides b the same way q does. Let q ≤ pm+1 be a condition deciding
b and max(supp(q)) = m + 1. Without loss of generality, assume q ⊩ b. Suppose

q ≤ pm+1 + τ for some τ ∈ Ap
m+1

m+1 . Let µ = τ ↾ dm+1
m+1. By the property ⋆(qm+1),

we have that q ↾ (m + 1)⌢(qm+1 + µ) \ (m + 1) ⊩ b. Note that q ↾ (m + 1) ≤
(pm+1 + τ) ↾ (m+1) = t(µ). We claim that im+1 = 0. Suppose im+1 = 1 (the case
im+1 = 2 is similar). Let G be generic containing q ↾ (m + 1), hence, containing
t(µ). Let t ∈ G be such that t⌢(qm+1 + µ) ↾ (m + 1) ⊩ ¬b. We may assume
t ≤ q ↾ (m+ 1), but then t⌢(qm+1 + µ) \ (m+ 1) ⊩ b,¬b, which is a contradiction.
Thus, im+1 = 0. A similar proof shows that already t(µ)⌢(qm+1+µ)\ (m+1) ⊩ b,

and hence, pm+1+τ ⊩ b. Since im+1 = 0, for every τ ′ ∈ Ap
m+1

m+1 with µ′ = τ ′ ↾ dm+1
m+1,

µ′ ∈ A0. A similar argument shows that pm+1 + τ ′ ⊩ b. By a density argument,
pm+1 ⊩ b. We finish the argument for pm+1. Recall that p∗ is a ≤∗-lower bound of
⟨pn : n < ω⟩.

Claim 6.8.3. p∗ ≤∗ p and p∗ satisfies the Prikry property.

Proof (Claim 6.8.3)
To show that there is a condition q ≤∗ p∗ which decides b, let q ≤ p∗ such that

q decides b. If q ≤∗ p∗, then q ≤∗ p, but this contradicts our assumption that there
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is no direction extension of p deciding b. Hence, q is impure, let n = max(supp(p)).
Since q ≤ pn, by our construction of pn, we have that pn decides b the same way
q does. Since p∗ ≤∗ pn, p∗ also decides b, which is a contradiction. Hence, we are
done.

■(Claim 6.8.3)
We finished the proof of the Prikry property for pure conditions. We now give an

outline of the proof when we start with an impure condition p with a focus on the
modifications. Assume that p is impure. We will give an outline on how to construct
a ≤∗-decreasing sequence ⟨pm : m < ω⟩ satisfying the properties described as in the
proof starting with a pure condition. The construction will split into three cases:
pm for m ̸∈ supp(p) such that supp(p) \ (m + 1) ̸= ∅, pm for m ∈ supp(p) and pm

for m > max(supp(p)).
pm for m ̸∈ supp(p) which supp(p) \ (m + 1) is nonempty: the construction

is similar as in the pure case, except that the parameters change. Let m∗ =
min(supp(p)\(m+1)), λm∗ = λm∗(fpm∗). For n ∈ [m,m∗), let λjn,m∗ = λjn,m∗(f

p
m∗),

and Bn,m∗ = B
en,m∗ (fp

m∗ )
n,m∗ (λm∗ , λjn,m∗).

Let

Q̄m ={⟨fn : n ≥ m⟩ ∈
∏

n∈[m,m∗)

Bn,m∗ |

⟨dom(fn) : n ∈ [m,m∗)⟩ is ⊆ -increasing},
R̄m ={(f, r⃗) ∈ Bm,m∗ × (P⟨en,m∗ (fp

m∗ ):n∈[m+1,m∗)⟩,≤∗) |
dom(f) ⊆ dom(frm+1)},

S̄m =((P/p) \m∗,≤∗)

where the first coordinate of r⃗ appearing in R̄m has the first coordinate frm+1

Recall that κm∗(fpm∗) ,λm∗ are regular, and greater than κ̄m∗ . Note that Q̄m is λ+m∗ -
closed Let N̄m ≺ Hθ for some sufficiently large regular cardinal θ > λ̄jω containing
“enough” information, such that |N̄m| = λm∗ and <κmNm ⊆ Nm. Let ⟨fmn : n ∈
[m,m∗)⟩⌢r⃗ be (Nm+1, Q̄m × S̄m)-generic below ⟨fpm−1

n : n ∈ [m,m∗)⟩⌢pm−1 \m∗,
where p−1 = p. Let dmn = dom(fmn ). Let Amn ∈ en,m∗(fpm∗)(dmn ) be a measure-one

set projecting down to Ap
m−1

n for all n ∈ [m,m∗). Fix µ ∈ Amm, so µ ∈ N̄m. Let
P̄m,µ = P⟨en,m(µ):n<m⟩. Define D̄µ as the collection of (f, r⃗0, r⃗1) ∈ R̄m × S̄m such
that dom(µ) ⊆ dom(f) and for each t ∈ Pm+1,µ, if there are a function g ≤ f ⊕ µ
and r⃗′0 ≤∗ r⃗0, r⃗

′
1 ≤∗ r⃗1 such that t⌢⟨g⟩⌢r⃗′0⌢r⃗′1 decides b, then t⌢⟨f ⊕ µ⟩⌢r⃗0⌢r⃗1

decides b the same way. Let π : R̄m × S̄m → Q̄m × S̄m be the natural projection
and D̄′

µ = π[D̄µ]. One can check that D̄µ is an open dense set in N̄m.

Thus, we have that ⟨fmn : n ∈ [m,m∗)⟩⌢r⃗ ∈ D̄′
µ. Find A

m
n (µ) ∈ en,m∗(fpm∗)(dmn )

for n ∈ [m+ 1,m∗) such that ⟨fmm ⟩⌢⟨⟨fmn , Amn (µ)⟩ : n ∈ [m+ 1, µ∗)⟩⌢r⃗ ∈ Dµ. For
n ∈ [m + 1,m∗), let (Amn )∗ = Amn ∩ △µ∈Am

m
Amn (µ). By Lemma 3.11, (Am+1

n )∗ ∈
en,m∗(fpm∗)(dmn ). Let qm = pm−1 ↾ m⌢⟨fmm , Amm⟩⌢⟨⟨fmn , (Amn )∗⟩ : n > m+ 1⟩⌢r⃗ (if
m = 0 the first term pm−1 does not exist). Thus, we have the maximizing property
for qm (same as in ⋆(qm) in the pure case). If m = 0, shrink the set Amm so that
every object in Amm behaves the same, and then we can form pm by just qm with
the first shrunk measure-one set. If m > 0, for µ ∈ Amm, find t(µ) ∈ P̄m,µ which is a
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direct extension of (qm + µ) ↾ m deciding certain statement. Shrink the measure-
one set Amm so that for µ ∈ Amm, t(µ) decides the statement in the same direction.
Use Lemma 6.7 to form pm.
pm for m ∈ supp(p): Assume m > 0 (the case m = 0 is simpler). Let P̄m =

P⟨en,m(fp
m):n<m⟩. Let θ = |P̄m|, then θ < κm. Enumerate the conditions in P̄m as

⟨tα : α < θ⟩. Build a ≤∗-decreasing sequence ⟨r⃗α : α ≤ θ⟩ in (P/p) \m such that

(1) r⃗0 = pm−1 \m.
(2) if α ≤ θ is a limit ordinal, let r⃗α be a ≤∗-lower bound of ⟨r⃗β : β < α⟩.
(3) for α < θ, if r⃗α is built, and there is r⃗ ≤∗ r⃗α such that t⌢α r⃗ decides b, let

r⃗α+1 be such a r⃗, otherwise r⃗α+1 = r⃗α.

The construction proceeds to the θ-th stage, since ((P/p) \m,≤∗) is κ+m-closed.

Let r⃗∗ = r⃗θ. Let Ġ be the canonical name of a generic object for P̄m. Let t ≤∗

pm−1 ↾ m be deciding the following statement:

φ ≡ ∃t′ ∈ Ġ(t′⌢r⃗ ∥ b).

By extending t regarding the direct extension if necessary, assume that either
t ⊩ ∃t′ ∈ Ġ(t′⌢r⃗ ⊩ b), t ⊩ ∃t′ ∈ Ġ(t′⌢r⃗ ⊩ ¬b), or t ⊩ ∄t′ ∈ Ġ(t′⌢r⃗ ⊩ b). We finish
the construction by letting pm = t⌢r⃗.
pm for m > max(supp(p)): the construction is exactly the same as for the

construction of pm for the pure case.
We finish the proof of Theorem 6.8.

□

Theorem 6.9. P has the strong Prikry property. Namely, for each dense open set
D ⊆ P and p ∈ P, there is a condition q ≤∗ p and a finite subset a of ω (a can be
empty) such that

(1) a ∩ supp(p) = ∅.
(2) every |a|-step extension of q using objects from {Aqn : n ∈ a} lies in D.

Proof. (Sketch) The proof has the same structure as in the proof of the Prikry
property. We only emphasize the key different ingredients from the proof of the
Prikry property. For more details, consult the proof of the Prikry property. We
will also only prove for pure conditions. The proof for arbitrary conditions can be
modified as in the proof of the Prikry property for impure conditions.

Let p be a pure condition. Fix an open dense set D. We will build a ≤∗-
decreasing sequence ⟨pm : m < ω⟩, such that if there is q ≤ pm with q ∈ D,
max(supp(q)) = m such that for r ≤ qm with r ∈ D, and max(supp(r)) = m,
we have supp(q) ≤ supp(r) in the usual well-ordering in [OR]<ω, then for every
µ⃗ ∈

∏
n∈supp(q)

Ap
m

n , we have pm + µ⃗ ∈ D. It will then be routine to check that a

lower bound of the sequence ⟨pm : m < ω⟩ will satisfy the condition for the strong
Prikry property. Let Bn = BEn(λ, λjn).

Construction of p0: Let

Q0 = {⟨fn : n < ω⟩ ∈
∏
n<ω Bn | ⟨dom(fn) : n < ω⟩ is ⊆-increasing}

where
∏
n<ω Bn is a full support product, and

R0 = {(f, r⃗) ∈ B0 × (P⟨En:n>0⟩,≤∗) : dom(f) ⊆ dom(fr1 )},
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where fr1 is the first Cohen part of r⃗. Fix a sufficiently large regular cardinal θ.
Build an elementary submodel N0 ≺ Hθ of size λ which is the union of an inter-
nally approachable chain of length κ0, N0 is closed under <κ0-sequences containing
enough information. Let ⟨f0n : n < ω⟩ be (N0,Q0)-generic, and ⟨f0n : n < ω⟩ ≤ ⟨fpn :
n < ω⟩. Let d0n = dom(f0n). Let A0

n ∈ En(d
0
n) be a measure-one set projecting

down to Apn for all n.
Fix µ ∈ A0

0. Define Dµ as the collection of (f, r⃗) ∈ R0 such that dom(µ) ⊆
dom(f), and if there is (g, r⃗′) ≤R0 (f⊕µ, r⃗) such that ⟨g⟩⌢r⃗′ ∈ D, then ⟨f⊕µ⟩⌢r⃗ ∈
D. Let π : R0 → Q0 be the natural projection. Let D′

µ = π[Dµ]. Then Dµ

is a dense open subset of Q0 and is in N0. Hence, ⟨f0n : n ∈ ω⟩ ∈ D′
µ. Let

⟨A0
n(µ) : n > 0⟩ be such that ⟨f00 ⟩⌢⟨⟨f0n, A0

n(µ) : n > 0⟩ ∈ Dµ. For n > 0, let
(A0

n)
∗ = A0

n ∩△µ∈A0
0
A0
n(µ). Let q0 = ⟨f00 , A0

0⟩⌢⟨⟨f0n, (A0
n)

∗⟩ : n > 0⟩. For µ ∈ A0
0,

n > 0, we have that Aq
0+µ
n ⊆ {τ ∈ (A0

n)
∗ : dom(µ) ∪ rge(µ) ⊆ dom(τ)} ⊆ A0

n(µ).
Thus, we have the following property for q0 (call it (⋆(q0)):

(⋆(q0)) for µ ∈ A0
0, if there are f ≤ (q0 + µ)0 (which is f00 ⊕ µ), and

r⃗ ≤∗ (q0 + µ) \ 1 such that ⟨f⟩⌢r⃗ ∈ D, then q0 + µ ∈ D.

Shrink A0
0 to a measure-one set B so that

(1) either for every µ ∈ A0
0, q

0 + µ ∈ D,
(2) or for every µ ∈ A0

0, q
0 + µ ̸∈ D.

From q0, shrink the measure-one set A0
0 to B and call the new condition p0. Here

is the property of p0: if there is q ≤ p0 such that supp(q) = {0} and q ∈ D, then

for every µ ∈ Ap
0

0 , p0 + µ ∈ D.
Construction of pm+1: Suppose pm is constructed. Let

Qm+1 = {⟨fn : n > m⟩ ∈
∏
n>m Bn | ⟨dom(fn) : n > m⟩ is ⊆-increasing }

and,

Rm+1 = {(f, r⃗) ∈ Bm+1 × (P⟨En:n>m+1⟩,≤∗) : dom(f) ⊆ dom(frm+2)},

where the first coordinate of r⃗ is ⟨frm+2, A
r
m+2⟩.

Let Nm+1 be the union of an internally approachable chain of elementary sub-
structure of Hθ for sufficiently large regular θ, the length of the chain is κm+1,
where Nm+1 contains “enough” information, |Nm+1| = λ, <κm+1Nm+1 ⊆ Nm+1.
Let ⟨fm+1

n : n > m⟩ be (Nm+1,Qm+1)-generic, and ⟨fm+1
n : n > m⟩ ≤Qm+1 ⟨fpmn :

n > m⟩. Let dm+1
n = dom(fm+1

n ). Let Am+1
n ∈ En(d

m+1
n ) be a measure-one set pro-

jecting down to Ap
m

n for all n > m. Fix µ ∈ Am+1
m+1. Let Pm+1,µ = P⟨en,m+1(µ):n≤m⟩.

Define Dµ as the collection of (f, r⃗) ∈ Rm+1 such that dom(µ) ⊆ dom(f), and for
each t ∈ Pm+1,µ, if there is (g, r⃗′) ≤Rm+1

(f ⊕ µ, r⃗) such that t⌢⟨g⟩⌢r⃗′ ∈ D, then
t⌢⟨f ⊕ µ⟩⌢r⃗ ∈ D. Let π : Rm+1 → Qm+1 be the natural projection, and D′

µ =
π[Dµ]. The set Dµ is a dense, open subset of Rm+1, and Dµ ∈ Nm+1. Hence, we

have ⟨fm+1
n : n > m⟩ ∈ D′

µ. Let A
m+1
n (µ) be such that ⟨fm+1

m+1 ⟩⌢⟨⟨fm+1
n , Am+1

n (µ)⟩ :
n > m + 1⟩ ∈ Dµ. For n > m + 1, let (Am+1

n )∗ = Am+1
n ∩ △µ∈Am+1

m+1
Am+1
n (µ). Let

qm+1 = (pm ↾ (m + 1))⌢⟨fm+1
m+1 , A

m+1
m+1⟩⌢⟨⟨fm+1

n , (Am+1
n )∗⟩ : n > m + 1⟩. For

µ ∈ Am+1
m+1 and n > m + 1, Aq

m+1+µ
n ⊆ Am+1

n (µ). Thus, we have the following

property called (⋆(qm+1)):
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(⋆(qm+1)): For µ ∈ Am+1
m+1 and t ∈ Pm+1,µ, if there are g ≤ fqm+1 ⊕ µ and

r⃗ ≤∗ (qm+1 + µ) \ (m+ 2) such that t⌢⟨g⟩⌢r⃗ ∈ D, then
t⌢(qm+1 + µ) \ (m+ 1) ∈ D.

Fix µ ∈ Am+1
m+1. Outside Nm+1, let D̄µ be the collection of t ∈ Pm+1,µ such that

either

t⌢((qm+1 + µ) \ (m+ 1)) ∈ D,

or for all g ≤ fq
m+1

m+1 ⊕ µ, r⃗ ≤∗ (qm+1 + µ) \ (m+ 2),

t⌢⟨g⟩⌢r⃗ ̸∈ D.

We can use the property of Dµ to show that D̄µ is open dense (in fact, D̄µ =
Pm+1,µ). Use the induction hypothesis to find t(µ) ≤∗ (qm+1 + µ) ↾ (m+ 1), with
the least [ω]<ω-element in the lexicographic order n⃗µ = {n0, . . . , nµk(µ)−1} such that

nµ0 < · · · < nµk(µ)−1, such that for every τ⃗ ∈
∏

n∈n⃗µ

A
t(µ)
n , we have t(µ) + τ⃗ ∈ D̄µ.

For each µ ∈ Am+1
m+1, define Fµ : A

t(µ)

nµ
0
×· · ·×At(µ)

nµ
k(µ)−1

→ 2 by Fµ(τ0, . . . , τk(µ)−1) =

1 if and only if

(t(µ) + ⟨τ0, . . . , τk(µ)−1⟩)⌢(qm+1 + µ) \ (m+ 1) ∈ D.

We have a measure one set B
t(µ)

nµ
i

⊆ A
t(µ)

nµ
i

for all i < k(µ) such that F ↾ Bt(µ)
nµ
0

×

. . . B
t(µ)

nµ
k(µ)−1

is constant. Shrink the measure one sets A
t(µ)

nµ
0
, . . . , A

t(µ)

nµ
k(µ)−1

inside t(µ)

to B
t(µ)

nµ
0
, . . . , B

t(µ)

nµ
k(µ)−1

, respectively. Call the resulting condition t∗(µ). By the

shrinking of measure one sets in t(µ), we have arranged that

(S1) either (t∗(µ) + ⟨τ0, . . . , τk(µ)−1⟩)⌢(qm+1 + µ) \ (m+ 1) ∈ D for all τ⃗ in the

product of measure-one sets B
t(µ)

nµ
i

,

(S2) or for all τ⃗ in the product of measure-one setsB
t(µ)

nµ
i

, there are no g ≤ fm+1
m+1⊕

µ, and r⃗ ≤∗ (qm+1 + µ) \ (m + 2) such that (t∗(µ) + ⟨τ0, . . . , τk(µ)−1)⟩ ⌢
⟨g⟩⌢r⃗ ∈ D.

Shrink Aq
m+1

m+1 further so that every µ satisfies (S1), or every µ satisfies (S2). If
every µ satisfies (S1), shrink further so that there is a sequence n⃗m+1 such that for

every µ ∈ A′
m+1, n⃗µ := ⟨nt(µ)0 , . . . , n

t(µ)
k(µ)−1⟩ = n⃗m+1.

Observe that t∗(µ) ≤∗ (pm + (µ ↾ dom(fp
m

m+1))) ↾ (m + 1). Use Lemma 6.7
to integrate these components (with t∗(µ), not t(µ)) together to form a condition

pm+1 ≤∗ pm. Hence, fp
m+1

m+1 ≤ fm+1
m+1 , A

pm+1

m+1 projects down to Am+1
m+1, and τ ∈ Ap

m+1

m+1

with µ = τ ↾ dom(fp
m

m+1), we have that (pm+1 + τ) ↾ (m + 1) = t∗(µ) and for

(pm+1 + τ) \ (m + 1) ≤∗ (qm+1 + µ) \ (m + 1). This completes the construction
of pm+1. Here is what we have: if q is an extension of pm+1 such that supp(q) is
the least in the lexicographic order in [ω]<ω, max(supp(q)) = m + 1, and q ∈ D,
then every extension q′ of pm+1 with supp(q′) = supp(q) is in D. Now let p∗ be a
≤∗-lower bound of ⟨pn : n < ω⟩.

Claim 6.9.1. p∗ satisfies the strong Prikry property.
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Proof (Claim 6.9.1)
(sketch) Let q ≤ p∗ with q ∈ D. Assume q is not pure with the least supp(q)

in the lexicographic order in [ω]<ω, meaning if there is r ≤ p∗ with r ∈ D, then
supp(q) ≤ supp(r). Enumerate supp(q) in increasing order as n0 < · · · < nk−1.
If nk−1 = 0, then the proof is easy. Assume nk−1 = m + 1. Using the notations
from the construction of pm+1, we have that for every τ ∈ Aqm+1, τ ↾ dm+1

m+1 satisfies

the property (S1), and n⃗m+1 = ⟨n0, . . . , nk−2⟩. By the way we shrank Am+1
m+1, for

every µ⃗ ∈
∏

n∈n⃗m+1∪{m+1}
Ap

m+1

n , we have pm+1 + µ⃗ ∈ D. This implies that for

µ⃗ ∈
∏
n∈n⃗m+1∪{m+1}A

p∗

n , p∗ + µ⃗ ∈ D. Hence, the proof is done.

■(Claim 6.9.1)
This completes the proof of Theorem 6.9.

□

7. forcing with arbitrarily many extenders

We state without proofs in this section. All the proofs are close to the proofs
in Section 6. The structure of the proof of the Prikry property is almost the same
as the proof in Section 6: for each condition p and a Boolean value b, build a ≤∗-
decreasing sequence ⟨pα : α < η⟩. The construction of pα for successor α is similar
to the construction of pm+1 in Theorem 6.8. If α is limit, we only take pα as a
≤∗-lower bound of ⟨pβ : β < α⟩. Assume η > 0 is an arbitrary ordinal and the
result from Theorem 2.14 holds for η.

Definition 7.1. A forcing P⟨Eα:α<η⟩ consists of conditions p, and a support of p,
which is supp(p) ∈ [η]<ω, of the form p = ⟨pα : α < η⟩, where

pα =

{
⟨fα⟩ if α ∈ supp(p),

⟨fα, Aα⟩ otherwise,

and for each α < η such that supp(p)\ (α+1) ̸= ∅, let α∗ = min(supp(p)\ (α+1)),
then the following hold:

(1) for each α where α∗ does not exist,
• if α ∈ supp(p) (which is exactly when α = max(supp(p))), then
fα ∈ BEα(λ, λjα), dα := dom(fα) is an α-domain with respect to
Eα, and if α > 0, fα(κα) is α-reflected for the sequence ⟨Eβ : β ∈
[max{0,max(supp(p) ∩ α)}, α)⟩

• if α ̸∈ supp(p) (which is exactly when α > max(supp(p)),
– fα ∈ BEα(λ, λjα).
– Let dα = dom(fα) is an α-domain with respect to Eα, and Aα ∈
Eα(dα).

(2) for each α where α∗ exist, then
• if α ∈ supp(p) (which is exactly when α = max(supp(p) ∩ α∗))),

fα ∈ Beα,α∗ (fα∗ )(λα∗(fα∗), λjα,α∗(fα∗)), dα := dom(fα) is an α-domain
with respect to eα,α∗(fα∗), and if α > 0, then fα(κα) is α-reflected

for the sequence ⟨ejβ,α∗(fα∗) : β ∈ [max{0,max(supp(p) ∩ α)}, α)⟩.
Recall that λα∗(fα∗) = sα∗(fα∗(κα∗)) where jEα∗ (sα∗)(κα∗) = λ,

λjα,α∗(fα∗) = tnα∗(fα∗(κα∗)) where jEα∗ (t
α
α∗)(κα∗) = λjα and λjα =

jEα
(λ), and eα,α∗(fα∗) = hαα∗(fα∗(κα∗)).
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• if α ̸∈ supp(p) (which is exactly when α ∈ (max(supp(p) ∩ α∗), α∗)
and max(∅) = −1),

– fα ∈ Beα,α∗ (fα∗ )(λα∗(fα∗), λjα,α∗(fα∗)), and dα := dom(fα) is an
α-domain with respect to eα,α∗(fα∗).

– rge(fα ↾ jeα,α∗ (fα∗ )(κα)) ⊆ κα.

– Aα ∈ eα,α∗(fα∗)(dα).
(3) For max(supp(p)) ≤ β < α < η, dβ ⊆ dα.
(4) If β < η is such that β∗ exists, then for each β < α < β∗, dβ ⊆ dα.
(5) if α < η is limit and α ∈ supp(p), then

• if α∗ does not exist, then fα(λ) = sα(fα(κα)), and for β < α, fα(λ
j
β) =

tβα(fα(κα)). Also, fα(λ̄
j
α) = uαα(fα(κα)), which is greater than tβα(fα(κα))

for all β < α (recall jEα
(uαα)(κα) = λ̄jα = supβ<α(λ

j
β), where λ

j
β =

jEβ
(λ).

• if α∗ exists, then fα(λα∗(fα∗)) = sα(fα(κα)), and for β < α, fα(λ
j
β,α∗) =

tβα(fα(κα)). Also, fα(λ̄
j
α,α∗) = uαα(fα(κα)), which is greater than

tβα(fα(κα)) for all β < α.

A condition p is pure if supp(p) = ∅. Otherwise, p is said to be impure.

Definition 7.2. For p, q ∈ P. We say that p is a direct extension of q, denoted by
p ≤∗ q if

(1) supp(p) = supp(q).
(2) for all α < η, fpα ≤ fqα.
(3) for α ̸∈ supp(p), Apα ↾ dqα ⊆ Aqα.

Notice that if p ≤∗ q, then for α ∈ supp(p), fpα(κα) = fqα(κα), so all parameters
defined from fpα(κα) are the same as those defined from fqα(κα).

Definition 7.3. Let p ∈ P and α ̸∈ supp(p). Let µ ∈ Apα be ⟨pβ : β ∈ [max(supp(p)∩
α), α)⟩-squishable. The one-step extension of p by µ is the condition q, denoted by
p+ µ, such that

(1) supp(q) = supp(p) ∪ {α}.
(2) for β < max(supp(p) ∩ α), qβ = pβ .
(3) if α∗ = min(supp(p) \ (α + 1)) exists, then for β ∈ (α, α∗), qβ = ⟨fpβ , Bβ⟩

where Bβ = {τ ∈ Apβ : τ is ⟨fpα, Apα⟩-squishable, and dom(µ) ∪ rge(µ) ⊆
dom(τ)}, and for β ≥ α∗, qβ = pβ .

(4) if α∗ does not exist, then for β > α, qβ = ⟨fpβ , Bβ⟩ where Bβ = {τ ∈ Apβ : τ

is ⟨fpα, Apα⟩-squishable and dom(µ) ∪ rge(µ) ⊆ dom(τ)}.
(5) fqα = fpα ⊕ µ.
(6) for β ∈ [max(supp(p)∩α), α), fqβ = µ ◦ fpβ ◦µ−1 and Aqβ = µ ◦ (Apβ)µ ◦µ−1.

We define an n-step extension recursively as follows: p is an n-step extension of
q for n > 1 if p = (q + ⟨µ0, · · · , µn−2⟩) + µn−1, under the condition that for i < n,
µi is legitimate to perform a 1-step extension into q+ ⟨µ0, · · · , , µi−1⟩. Define p ≤ q
if p is a direct extension of some n-step extension of q (n can be 0).

Lemma 7.4. (1) Let α < η. Let p be a condition such that α ̸∈ supp(p) and
q ≤∗ p. Suppose µ ∈ Aqα, q + µ is valid. Then q + µ ≤∗ p+ (µ ↾ dpα).

(2) The ordering ≤ is transitive.
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(3) Suppose p is pure and q is a n-step extension of p at coordinates α0 < · · · <
αn−1. Then there are µi ∈ Apαi

for i < n such that q = p+ ⟨µ0, . . . , µn−1⟩.
As a consequence, the order of the objects we use to extend p to q can be
commuted modulo squishing.

Lemma 7.5. P is λ++-c.c.

If p ∈ P and α ∈ supp(p), then P/p factors into two posets P0 = ((P/p) ↾
α)⟨eβ,α(fp

α)):β<α⟩ and P1 = (P/p) \ α.

Lemma 7.6. P0 is λα(f
p
α)

++-c.c. If α + 1 ̸∈ supp(p), (P1,≤∗) is κα+1-closed. If
α+ 1 ∈ supp(p), (P1,≤∗) is λα+1(f

p
α+1)

+-closed.

Lemma 7.7. Let p ∈ P and α ̸∈ supp(p). Let f ′ ≤ fpα with d′ = dom(f ′). Assume
that if α∗ = min(supp(p) \ (α + 1)) exists, A′ ∈ eα,α∗(fα∗)(d′), and if α∗ does not
exist, A′ ∈ Eα(d

′). Fix fβ for β > α such that fβ ≤ fpβ and dβ := dom(fβ) ⊇ d′,

and if α < β < β′, dom(fβ) ⊆ dom(fβ′). Suppose that for each µ ∈ A′, there is a
condition t(µ) ≤∗ (p + (µ ↾ dpα)) ↾ α, and there is r⃗(µ) = ⟨fβ , Aβ(µ) : β > α⟩ such
that Aβ(µ) is of measure-one with respect to dom(fβ). Then there is a condition
q ≤∗ p such that

(1) fqα ≤ f ′ and Aqα projects down to A′.
(2) for τ ∈ Aqα with µ = τ ↾ A′, we have that

• (q + τ) ↾ α = t(µ).
• (q + τ) \ (α+ 1) ≤∗ r⃗(µ).

Theorem 7.8. P has the Prikry property.

Theorem 7.9. P has the strong Prikry property. Namely, for each dense open set
D ⊆ P and p ∈ P, there is a condition q ≤∗ p and a finite subset a of η (a can be
empty) such that

(1) a ∩ supp(p) = ∅.
(2) every |a|-step extension of p using objects from {Aqα : α ∈ a} lies in D.

8. cardinal preservation

Let η be a limit ordinal and P = P⟨Eα:α<η⟩. In this section we determine the

cardinals which are preserved and collapsed. Note that P is λ++-c.c., so every
cardinal above and including λ++ is preserved.

Theorem 8.1. When forcing with P, cardinals below and including κ̄η which are
not in the intervals (κ̄α, κα) for α < η limit are preserved.

Proof. First, note that (P,≤∗) is κ0-closed, so every cardinal below and including
κ0 is preserved. We now consider the cardinals in the interval (κα, κα+1]. Let
p ∈ P be such that α, α + 1 ∈ supp(p). Then P/p factors into 3 posets, namely

P0 = (P/p) ↾ α = P⟨eβ,α(fp
α):β<α⟩, P1 = (P/p)(α) = Beα,α+1(f

p
α+1)(λα+1(f

p
α+1),

λjα,α+1(f
p
α+1)), and P2 = P⟨Eβ :β≥α+1⟩. P0 is λα(f

p
α)

++-c.c. and λα(f
p
α)

++ < κα.

P1 is λα+1(f
p
α+1)-closed, and λα+1(f

p
α+1)

+-c.c., so P1 preserves all cardinals, and
(P2,≤∗) is κα+1-closed. Hence, all cardinals in the interval (κα, κα+1] are preserved.
For α < η limit, κ̄α = supβ<α κβ , so κ̄α is preserved.

□
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To understand the cardinal behaviors in the interval (κ̄α, κα) for α < η limit, as
well as the interval (κ̄η, λ

++), let’s simplify by considering the case where η = ω
first, since this will be used to describe general cases.

Let η = ω, namely P = P⟨En:n<ω⟩. We analyze the V -cardinals in the interval

(κ̄ω, λ
+) in a generic extension. Fix a cardinal γ ∈ (κ̄ω, λ

+) with cf(γ) > κ̄ω. Then
for all n, in Mn, cf(sup jEn

[γ]) = cf(γ) ≤ λ < jEn
(κn) < cf(jEn

(γ)), which implies
sup jEn

[γ] < jEn
(γ). Set γn = sup(jEn

[γ]) and γ̄n = γjEn (which is jEn
(γ))). In

V [G], define Hγ whose domain is ω as follows: if there is a condition p ∈ G such
that max(supp(p)) = n and γn ∈ dom(fpn), define Hγ(n) = fpn(γn). Otherwise, let
Hγ(n) = 0. By genericity, Hγ is well-defined.

Lemma 8.2. When forcing with P⟨En:n<ω⟩, Hγ is an ω-cofinal sequence in γ.

Proof. Assume γ < λ (the case γ = λ is similar). Let ν < γ. Define νn = νjEn .
Define Dν as the collection of p ∈ P such that

(1) there is n0 < ω such that supp(p) ⊆ n0.
(2) for n ≥ n0,

• νn, γn, γ̄n ∈ dpn.
• for µ ∈ Apn, νn, γn, γ̄n ∈ dom(µ), µ(νn) = ν and µ(γ̄n) = γ.

Clearly Dν is dense. Let p ∈ Dν ∩ G. For q ≤ p with max(supp(q)) = n ≥
n0, q ∈ G, we have that q ≤ p + µ for some µ ∈ Apn. Hence, νn, γn, γ̄n ∈ dqn,
ν = fqn(νn) = µ(νn) < µ(γn) = fqn(γn) and fqn(γn) = µ(γn) < µ(γ̄n) = γ. Hence,
Hγ(n) ∈ (ν, γ). Since ν < γ is arbitrary, we are done.

□

We see that for every V -cardinal γ in the interval (κ̄ω, λ
+) with cf(γ) > κ̄ω,

V [G] adds an ω-cofinal sequence of γ. Recall that κ̄ω is preserved. We now explain
that if γ ∈ (κ̄ω, λ

+), γ is collapsed to have cardinal κ̄ω. Otherwise, let γ be the
least in the interval which is preserved. Then γ = (κ̄+ω )

V [G]. If γ is a cardinal with

cfV (γ) > κ̄ω, then cfV [G](γ) = ω, which is a contradiction. If cf(γ) < κ̄ω, then

cfV [G](γ) < κ̄ω < (κ̄+ω )
V [G], contradicting the fact that γ = (κ̄+ω )

V [G].

Corollary 8.3. When forcing with P⟨En:n<ω⟩, all cardinals in the interval (κ̄ω, λ
+)

are collapsed.

Lemma 8.4. When forcing with P⟨En:n<ω⟩, λ
+ is preserved.

Proof. Suppose not. Since all cardinals in the interval (κ̄ω, λ
+) are collapsed, (λ+)V

is collapsed to have size κ̄ω. Then in V [G], let ξ = cf λ+ < κω. Choose n < ω such
that ξ < κn. Extend p so that n ∈ supp(p). Break p into p ↾ n and p \ n. Since
p ↾ n lies in P⟨em,n(f

p
n):m<n⟩ which is λn(f

p
n)-.c.c., so λ

+ is collapsed in the forcing

in which p \ n lives (which is (P/p) \ n). Note that (P/p) \ n,≤∗) is κn-closed.
In V , let {γ̇i : i < ξ} be a sequence of names, forced by p \ n to be a cofinal

sequence in λ+. Build a sequence of conditions {pi : i < ξ} such that p0 = p \ n,
{pi : i < ξ} is ≤∗-decreasing, and pi+1 satisfies Lemma 6.9 for Di = {q ∈ P \ n : q
decides the value of γ̇i}.

Set r to be a ≤∗-lower bound of {pi : i < ξ} in P \n. Since each measure-one set
has size at most λ, for each i < ξ, Ai = {β : ∃r′ ≤ r, r′ ⊩ γ̇i = β̌} has size at most
λ. Set βi = supAi, and β = sup

i<ξ
βi. Then r ⊩ sup{γ̇i : i < ξ} ≤ β̌ and β < (λ+)V ,

which is a contradiction.
□



38 SITTINON JIRATTIKANSAKUL

We now consider the case η > ω is limit. For α < η limit and p ∈ G with
α ∈ supp(p) and λα = λα(f

p
α), the forcing Pα = (P/p) ↾ α is equivalent to the

forcing defined from a sequence of extenders with shorter length P⟨eβ,α(fp
α):β<α⟩.

We can generalize the proofs of Lemma 8.2, Corollary 8.3, and Lemma 8.4 in a
similar fashion to show the following:

Theorem 8.5. Assume P = P⟨Eα:α<η⟩ and η > ω is regular. For α < η limit,
let λα = λα(f

p
α) for some p ∈ G. Then in the interval (κ̄α, κα), all cardinals in

(κ̄α, λ
+
α ) are collapsed, cardinals in the interval [λ+α , κα) are preserved. In par-

ticular, (λ+α )
V = (κ̄+α )

V [G]. For γ ∈ (κ̄α, λ
+
α ) with cfV (γ) > κ̄α, we have that

cfV [G](γ) = cf(α). In addition, all cardinals in the intervals (κ̄η, λ
+) are collapsed,

and λ+ is preserved, hence, (λ+)V = (κ̄+η )
V [G]. For γ ∈ (κ̄η, λ

+) with cfV (γ) > κ̄η,

we have that cfV [G](γ) = η. Other V -cardinals which were not mentioned are pre-
served.

9. blowing up power sets

We now show that forcing with P will add |λ̄jη| new subsets of κ̄η (recall that

λ̄jη = supα<η jEα
(λ) and κ̄η = supα<η κα). Lemma 9.1 will be used to obtain

a condition in the generic extension that can be used to define scales (the formal
definition of scales is in Section 10). The technical conditions in the lemma ascertain
that the scales will be well-defined.

Lemma 9.1. Let β ≤ η be a limit ordinal. Let pβ be a condition such that

(1) if β < η, then we require that β ∈ supp(pβ), we let λβ = λβ(f
pβ

β ), λjα,β =

tαβ(f
pβ

β (κβ)) and θβ := uββ(f
pβ

β (κβ)) (recall that jEβ
(tαβ)(κβ) = λjα, and

jEβ
(uββ)(κβ) = λ̄jβ = supα<β λ

j
α).

(2) if β = η, then let λβ = λ, λjα,β = λjα, and θβ = λ̄jη.

Fix γ ∈ [κβ , θβ). We also assume that pβ satisfies the following: there is ᾱ < β

with supp(p)∩β ⊆ ᾱ, γ ∈ dp
β

ᾱ and for α′ ≥ ᾱ+1 and µ ∈ Ap
β

α′ , we have γ ∈ dom(µ)
and µ(γ) < jeι,eα′ (µ)(κι) for all ι ∈ [α + 1, α′] (here je′α,e′α(µ)(κ

′
α) := κ′α). Fix

α ∈ [ᾱ, β). Let D be the collection of q ≤ pβ such that

(1) α ∈ supp(q).
(2) If we enumerate (supp(q) ∩ β) \ α in decreasing order as α0 > · · · > αk−1,

then
(a) k > 1 and αk−1 = α and αk−2 = α+ 1.
(b) γ ∈ dom(fqα0

). Furthermore, let ⟨γi⟩i be the sequence of ordinals de-
fined inductively by setting γ0 = γ and γi+1 = fqαi

(γi) for as long as
γi ∈ dom(fqαi

), then ⟨γi⟩i reaches a stage where γk−1 is defined, and
γk−1 ∈ dom(fqα).

(c) let ⟨γi⟩i be as in (2b), then for i < k − 2, we have that γi+1 <
jeαi+1,αi

(fq
αi

)(καi+1
). If fqαi

is satisfies the condition in this item, we

say that fqαi
is sensible.

(d) let ξ ∈ (β \ (α + 2)). If ξ > α0, then for µ ∈ Aqξ, γ0, γ1 ∈ dom(µ)

and µ(γ0) < jeα1,α0 (µ)
(κα1

) If i ∈ [0, k−2) is the least such that ξ < αi,

then for µ ∈ Aqξ, γi+1, γi+2 ∈ dom(µ) and µ(γi+1) < jeαi+1,αi
(µ)(καi+1

).

If fqαi
is satisfies the condition in this item, we say that fqαi

is sensible.
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Then D is open dense below pβ.

Proof. (Lemma 9.1)
We prove for the case β = η. The case β < η is similar. We will show something

stronger: if q ≤ p and α, α + 1 ∈ supp(q), then q ∈ D. Let q ≤ p be such that
α, α + 1 ∈ supp(q). Enumerate supp(q) \ α as α0 > α1 > · · · > αk−2 > αk−1,

where k > 1, αk−1 = α and αk−2 = α + 1. Since q ≤ p, let µi ∈ Ap
β

αi
be such that

q ≤∗ p+ ⟨µk−1, µk−2, · · · , µ1, µ0⟩ (note that the order of the objects is important).
By induction on i < k − 1, we show that

(1) for γi ∈ dom(fqαi
) and fqαi

is sensible.
(2) if ξ ∈ (αi, αi−1) and µ ∈ Aqξ, then µ is sensible, where α−1 := η.

(3) γi+1 = µi(γ).

i = 0: Note that fqα0
= fpα0

⊕ µ0, so γ0 ∈ dom(fqα0
), and fqα0

(γ0) = µ0(γ) <
jeα1,α0

(µ0)(κα1
). For ξ ∈ (α0, η) and µ ∈ Aqξ, dom(µ0)∪rge(µ0), so γ0, γ1 ∈ dom(µ).

Clearly µ is sensible. Note that γ1 = µ0(γ).
i = j+1: By commuting the objects, we can see that fqαi

= µj ◦ (fpαi
⊕µi)◦µ−1

j .

Note that γi = µj(γ), so (fpαi
⊕ µi) ◦ µ−1

j (γi) = µi(γ). Since i < k − 1, we have

αi > α, so γ < jEαi
(καi

). By this clause, µi(γ) < καi
. Hence µi(γ) ∈ dom(µj)

and µj fixes µi(γ). As a consequence, γi+1 = fqαi
(γi) = µi(γ), which is sensible.

Now for ξ ∈ (αi, αj), µ ∈ Aqξ, we have that dom(fqαi
) ∪ rge(fqαi

) ⊆ dom(µ), hence,

γi, γi+1 ∈ dom(µ). Finally, since µ ∈ Aqξ, µ = µj ◦ τ ◦ µ−1
j for some τ ∈ Apξ . Hence,

µ(γi) = µj ◦ τ(γ) = τ(γ) (again, µj fixes τ(γ)). Hence µ is sensible.

Now we see that γk−1 is defined. Note that fqα = µk−2 ◦(fpα⊕µk−1)◦µ−1
k−2. Since

γk−1 = µk−2(γ), (f
p
α ⊕ µk−1) ◦ µ−1

k−2(γk−1) = µk−1(γ). Finally, since dom(µk−1) ∪
rge(µk−1) ⊆ dom(µk−2), we have that γk−1 ∈ dom(fqα) as required.

□

Let G be a generic object for P. Fix a limit ordinal β ≤ η. Note that the
collection of pβ satisfying the initial condition in Lemma 9.1 is open dense, we may
assume that pβ ∈ G. From now on, in V [G], fix λβ and θβ as in Lemma 9.1, which
are defined from pβ . Note that by genericity of G, λβ and θβ is well-defined.

For γ ∈ [κβ , θβ), define a function F βγ : β → κ̄β as follows: if α ≤ ᾱ, let

F βγ (α) = 0. Assume γ < λjα,β , find p ∈ G with p lying in the dense open set

below pβ from Lemma 9.1. Enumerate supp(p)∩ (β + 1) \ α in decreasing order as
α0 > · · · > αk−1 = α. Define γ0, . . . , γk−1 as in Lemma 9.1, and define F βγ (α) =

fpα(γk−1). If β = η, we remove the superscript β and just write Fγ instead of F βγ .
Let us visualize the definition of Fγ(α) in Figure 6, where β = η.

Figure 6. The definition of Fγ(α) when | supp(p) \ α| = 4
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In Figure 6, we assume that in Lemma 9.1, β = η and p ∈ D ∩ G. Each pα
is either ⟨fα⟩ or ⟨fα, Aα⟩. We also assume γ < λjα and assume that a decreasing
enumeration of supp(p) \ α is α0 > α1 > α2 > α3 = α (where α2 = α+ 1).

To check that F βγ is well-defined, we consider only the case η = β. Suppose
p, q ∈ G satisfy the conditions in Lemma 9.1. Find r ∈ G with r ≤ p, q. Hence,
((supp(p)∪supp(q))∩β)\α ⊆ (supp(r)∩β)\α. Assume r ≤∗ p+⟨µ0, . . . , µl−1⟩ and
r ≤∗ q + ⟨τ0, . . . , τl−1⟩. For simplicity, assume µi is a βi-object, τj is a ζj-object,
α < β0 < · · · < βl−1 and α < ζ0 < · · · < ζm−1. We will show that p and r compute
the same Fγ(α)-value. A similar argument will show that q computes the same
Fγ(α) as r. We simplify further that l = 1, µ = µ0.

We see that the value Fγ(α) computed by p is fpαk−1
◦ . . . fpαn

◦ fqαn−1
◦ . . . fpα0

(γ).

CASE I ξ > α0: As in the proof of Lemma 9.1, µ fixes fpα0
(γ) and hence,

frαk−1
◦ · · · ◦ frα0

◦ frξ (γ) = fpαk−1
◦ · · · ◦ fpα1

◦ µ ◦ fpα0
◦ µ−1 ◦ µ(γ)

= fpαk−1
◦ · · · ◦ fpα1

◦ µ ◦ fpα0
(γ)

= fpαk−1
◦ · · · ◦ fpα1

◦ fpα0
(γ).

CASE II ξ < α0: Let n be the least such that ξ < αn. As in the proof of
Lemma 9.1, µ fixes fpαn+1

(γn+1), where γn+1 = fpαn
◦ fpαn−1

◦ · · · ◦ fpα0
(γ), so

frαk−1
◦ . . . frαn+1

◦ frξ ◦ frαn
◦ · · · ◦ frα0

(γ) = fpαk−1
◦ · · · ◦ µ ◦ fpαn+1

◦ µ−1 ◦ µ ◦ fpαn
◦ · · · ◦ fpα0

(γ)

= fpαk−1
◦ · · · ◦ µ ◦ fpαn+1

◦ fpαn
◦ · · · ◦ fpα0

(γ)

= fpαk−1
◦ . . . fpαn+1

◦ fpαn
◦ · · · ◦ fpα0

(γ).

Thus, p and r compute the same Fγ(α).

Remark 9.2. If γ < jEα
(κα+1), then the requirements for a condition p ∈ G that

is used to compute Fγ(α) can be weakened a bit: the requirement that α + 1 ∈
supp(p) is not necessary. In practice, if γ < jE0

(κ1), then a scale analysis will
be slightly simpler. Here is a reason. Suppose we start with a condition p with
max(supp(p)) < α, γ ∈ dpα. Let µα ∈ Apα and µpα+1 be such that γ ∈ dom(µα),
dom(µα) ∪ rge(µα) ⊆ dom(µα+1). Then µα(γ) < µα(jEα(κα+1)) = κα+1. Hence
µα+1 ◦µα ◦µ−1

α+1 ◦µα+1(γ) = µα(γ). This concludes that p+µα and p+ ⟨µα, µα+1⟩
compute the same Fγ(α)-value.

Proposition 9.3. In V [G], ⟨F βγ : γ ∈ [κ̄β , θβ)⟩ is <bd- increasing, where for each
pair of ordinal functions t, t′ with domains limit ordinal θ, t <bd t

′ means there is
α < θ such that for all α′ > α, t(α′) < t′(α′).

Proof. We prove the case β = η. The case β < η is similar. Let γ, γ′ ∈ [κη, λ̄
j
η),

γ < γ′. Let ξ < η be such that γ′ < λjξ. We will show that Fγ <bd Fγ′ by a density

argument. Let p ∈ P. We can find p′ ≤ p and ξ0 ≥ ξ such that max(supp(p′)) ≤ ξ0,
γ and γ′ are in the domains of the αth Cohen parts and measure-one parts of p for
all α > ξ0.

We can also assume that for α > α0, the domain of each object in Ap
′

α contains
γ, and γ′. We will show

p′ ⊩ ∀α > ξ0(Ḟγ(α) < Ḟγ′(α)).
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This is true because for each α > ξ0, if q ≤ p′ can be used to define Fγ(α) and
Fγ′(α), the functions used to compute their values computed (from q) are just com-
positions of objects. Every object is order-preserving, and by a density argument,
we are done. □

By Proposition 9.3, we conclude that in V [G], 2κ̄η ≥ |λ̄jη|. Recall that |λjα|V is

regular. If ⟨|λjα|V : α < η⟩ is not constant on the tail, then by a classical König’s
result on cardinal arithmetic, 2κ̄η > |λ̄jη|. With GCH, |P| = |λjη|. By the nice name

theorem, (2κ̄η )V [G] ≤ ||P|λ+⊗κ̄η |V . We now have two cases: the case where ⟨|λjα|V :
α < η⟩ is eventually constant, and the case where ⟨|λjα|V : α < η⟩ is not eventually
constant. For the first case, ⟨|λjα|V : α < η⟩ is eventually constant, say the constant

value is θ. Then ||P|λ+⊗κ̄η |V = θ = supα<η |λjα|. Hence 2κ̄η = supα<η |λjα|. For the
second case, we have that ||P|λ+⊗κ̄η |V = |λ̄jη|+. Hence 2κ̄η = (supα<η |λjα|)+. We
now conclude the cardinal arithmetic of 2κ̄η .

Theorem 9.4. By forcing with P⟨Eα:α<η⟩, where η is regular, we have that

(1) if ⟨|λjα|V : α < η⟩ is eventually constant, then in V [G], 2κ̄η = |λ̄jη|.
(2) if ⟨|λjα|V : α < η⟩ is not eventually constant, then in V [G], 2κ̄η = |λ̄jη|+.

10. scale analysis

First we define a notion of scales.

Definition 10.1. Let ρ be a singular cardinal and ξ > ρ. A scale on ρ of length ξ

is a family of functions f⃗ = ⟨fα : α < ξ⟩, together with ρ⃗ = ⟨ρβ : β < cf(ρ)⟩ such
that

(1) ρ⃗ is an increasing sequence of regular cardinals, cofinal in ρ, and ρ0 > cf(ρ).
(2) fα ∈

∏
β<cf(ρ)

ρβ .

(3) for α0 < α1 < ξ, fα0 <bd fα1 , (recall that this means there exists β0 < cf(ρ)

such that for β > β0, fα0(β) < fα1(β)). A f⃗ satisfying this property is said
to be <bd-increasing.

(4) f⃗ is cofinal, namely for any h ∈
∏

β<cf(ρ)

ρβ , there is an α < ξ such that

h <bd fα.

In Definition 10.1, it is oftenly enough to define fα(β) for all sufficiently large β,
since the scale properties only refer to how functions are on their tails.

Definition 10.2. Let f⃗ = ⟨fα : α < ξ⟩ be a scale. Then f is an exact upper bound

(eub) for f⃗ if

(1) f is an upper bound for f⃗ , i.e. for α < ξ, fα <bd f .
(2) If g <bd f then there is an α such that g <bd fα.

Note that if f is an eub of f⃗ , f(α) is regular for sufficiently large α, and f is

increasing on the tail, then f⃗ is a scale on
∏
α<η

f(α).

Definition 10.3. For a scale ⟨fα : α < ρ+⟩ on
∏

β<cf(ρ)

ρβ where ρ = supβ<cf(ρ) ρβ ,

we say that an ordinal α < ρ+ with cf(α) > cf(ρ) is very good if there are a club
C ⊆ α of order-type cf(α) and an ordinal β0 < cf(ρ) such that for α0 < α1 < ξ and
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β > β0, fα0
(β) < fα1

(β). A scale for a singular cardinal ρ is very good if every α
with cf(α) > cf(ρ) is very good.

We follow our definitions from Section 9. Namely, we have the ordinal functions
F βγ as well as Fγ . We now make some scale analysis. Note that if β ≤ η is limit,

we have that (λ+β )
V = (κ̄+β )

V [G]. In particular, (λ+)V = (κ̄+η )
V [G].

Proposition 10.4. In V [G], for β ≤ η limit. Let ξ < θβ be such that cfV [G](ξ) >

κ̄β. Then F βξ is an eub for ⟨F βγ : γ ∈ [κ̄β , ξ)⟩.
Proof. We have already checked in Proposition 9.3 that the sequence is<bd-increasing.
It remains to show that the sequence is cofinal. We will only show the case β = η.
Assume for simplicity that ξ < λj0.

Clearly Fξ is an upper bound of ⟨Fξ′ : ξ′ < ξ⟩. Let ḣ be a P-name such that

p ⊩ ḣ ∈
∏
α<η Ḟξ(α). We are going to build a ≤∗-decreasing sequence ⟨qα : α < η

or α = −1⟩. Let q−1 = p. Suppose qβ is built for all β ∈ α ∪ {−1}. Let (qα)∗

be a ≤∗-lower bound of ⟨qβ : β ∈ α ∪ {−1}⟩. Fix α < η. Let Dα = {q : q

decides ḣ(α)}. By the strong Prikry property, find q ≤∗ (qα)∗ witnessing the
strong Prikry property of Dα with the corresponding finite set Iα. We assume that
α, α + 1 ∈ Iα. For µ⃗ ∈

∏
γ∈Iα

Aqγ , write µ⃗ = ⟨µγ⟩γ∈Iα . Define Yα(µ⃗) as the value

that q + µ⃗ decides for ḣ(α). It is easy to check that the decided value is less than
the value Fξ(α) computed by q + µ⃗, which is µα+1(µα(ξ)). For µ⃗ ∈

∏
γ∈Iα\αA

q
γ ,

define Zα(µ⃗) = supτ⃗ (Yα(τ⃗
⌢µ⃗)) + 1. Note that the number of possible such τ⃗ is

λα(µα) = sα(µα(κα)). By our assumption on cofinality of ξ, we may assume that
λα(µα) < cf(µα+1(µα(ξ)) (this can be done on a measure-one sets), so Zα(µ⃗) <

µα+1(µα(ξ)) and for µ⃗ ∈
∏

γ∈Iα\α
Aqγ , q + µ⃗ ⊩ ḣ(α) < Zα(µ⃗). For γ > α + 1, let

A′
γ = A

jEα+1
(q)+mcα+1(d

q
α+1)

γ . Then for µ⃗ ∈
∏

γ∈Iα\(α+2)

A′
γ and ψ ∈ Aqα (recall that

Aqα = mcα+1(d
q
α+1) ◦ (jEα+1

(Aqα))mcα+1
◦mc−1

α+1(d
q
α+1) as shown in Lemma 3.9),

jEα+1(q) + ⟨mcα+1(d
q
α+1)

⌢ψ⌢µ⃗⟩ ⊩ jEα+1(ḣ(α)) < mcα+1(d
q
α+1)(jEα+1(ψ)jEα+1(ξ)).

Notice that the order of the objects is not increasing: mcα+1 is an α + 1-
object, while ψ is an α-object. Also, jEα+1(q) + ⟨mcα+1(d

q
α+1)

⌢ψ⟩ = jEα+1(q) +
⟨jEα

(ψ)⌢mcα+1(d
q
α+1)⟩, which is why the value at the rightmost of the forcing

relation is mcα+1(d
q
α+1)(jEα+1(ψ)jEα+1(ξ)). Note that the last value in the forc-

ing relation, which is mcα+1(d
q
α+1)(jEα+1(ψ)jEα+1(ξ)), is equal to ψ(ξ). Note that

ψ(ξ) < λ. Fix ψ ∈ Aqα. For γ ∈ Iα \ (α + 2), jEα+1
(Aqγ) comes from a measure

which is jEα+1
(κγ)-complete, and jEα+1

(κγ) > κjα > λ, we can inductively shrink
A∗
γ for γ ∈ Iα \ (α + 1) to Bγ,ψ so that the following holds: there is γα,ψ < ψ(ξ)

such that for all µ⃗ ∈
∏

γ∈Iα\(α+2)

Bγ,ψ,

jEα+1
(q) + ⟨mc⌢α+1 ψ

⌢µ⃗⟩ ⊩ jEα+1
(ḣ(α)) = γα,ψ,

which is equivalent to saying that for ψ ∈ jEα+1 [A
q
α], and µ⃗ ∈

∏
γ∈Iα\(α+2)

Bγ,ψ,

jEα+1(q) + ⟨ψ⌢mcα+1
⌢µ⃗⟩ ⊩ jEα+1(ḣ(α)) = γα,j−1

Eα+1
(ψ)
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Let’s replace the notation γα,j−1
Eα+1

(ψ) by γα,ψ. Fix ψ ∈ Aqα. By elementarity,

there are measure-one sets Aγ,ψ ⊆ Aq+ψγ for γ ∈ Iα \ (α + 1) such that for µ⃗ ∈∏
γ∈Iα\(α+1)

Aγ,ψ,

q + ⟨ψ⌢µ⃗⟩ ⊩ ḣ(α) = µα+1(γα,ψ).

For γ ∈ Iα \ (α + 1), let A∗
γ = △ψ∈Aq

α
Aγ,ψ. Shrink all measure-one sets Aqγ for

such γ in q to A∗
γ and call the new condition q′. Let γα = jEα

(ψ 7→ γα,ψ)(mcα(d
q
α)).

Then γα < λj0. Extend q
′ to q∗ so that γα ∈ dq

∗

α . Then note that

jEα
(τ 7→ τ(γα))(mcα(d

q∗

α )) = γα

= jEα
(ψ 7→ γα,ψ)(mcα(d

q
α))

= jEα(τ 7→ γα,τ↾dqα)(mcα(d
q∗

α )).

Then there is a measure-one set A∗
α ∈ Eα(d

q∗

α ) such that for τ ∈ A∗
α, τ(γα) =

γα,τ↾dqα . Shrink the α-th measure-one set to in q∗ to A∗
α and call the final condition

qα. Replace the notation γα,τ↾dqα by γα,τ . We see that for τ ∈ Aq
α

α , µ ∈ Aq
α

α+1, and

σ⃗ ∈
∏
γ∈Iα\(α+1)A

qα

γ , we have

qα + ⟨τ⌢µ⌢σ⃗⟩ ⊩ ḣ(α) = µ(τ(γα)) = Ḟγα(α).

Let r be a ≤∗-lower bound of ⟨qα : α < η⟩, and γ∗ = supα γα. This is less than
ξ since cf(ξ) > η.

Claim 10.4.1. There is s ≤∗ r such that s ⊩ ∀α∀β < η(Ḟγβ (α) < Ḟγ∗(α)).

Proof (Claim 10.4.1)

Note that we assume ξ < λj0. Let s ≤∗ r be such that γα for all α < η, and γ∗, are
in ds0 and for β < η, µ ∈ Asβ , we assume that {γα : α < η} ∪ {γ∗} ⊆ dom(µ). Since

objects are order-preserving, we have that s ⊩ ∀α < η∀β < η(Ḟγβ (α) < Ḟγ∗(α)).
■(Claim 10.4.1)

We now show that s ⊩ ḣ <bd Ḟγ∗ . Fix an α < η. Let s′ ≤ s. By the density,

assume that Iα ⊆ supp(s′), so s′ decide ḣ(α). Note that s′ ≤ qα + µ⃗ for some

µ⃗ ∈
∏
γ∈Iα

Aq
α

γ , so s′ ⊩ ḣ(α) = Ḟγα(α) < Ḟγ(α).

□

Corollary 10.5. In V [G], for β ≤ η limit. Let ξ ∈ (λβ , θβ) be regular. Then

⟨F βγ : γ ∈ [κ̄β , ξ)⟩ is a scale in
∏
α<η F

β
ξ (α).

In Collorary 10.5, we need that ξ > λβ because all cardinals in the interval

(κ̄β , λβ ] are collapsed in V [G] (as in Theorem 8.5). We may read off F βξ for ξ < κj0
from a generic object in a simpler way if we assume that for α < η, there is
vα : κα → κα such that jEα

(vα)(κα) = ξ. Then one can verify that in the extension,

Fξ(α) = vξ(f
p
α(κα)) for some p ∈ G with α ∈ supp(p). In particular, if ξ ∈ (λ, κj0)

is regular, then ⟨Fγ : γ ∈ [κ̄β , ξ)⟩ is a scale in
∏
α<η

vξ(f
p
α(κα)) for p ∈ G with

α ∈ supp(p). Note that since jEα
(sα)(κα) = λ and λUlt(V,Eα) ⊆ Ult(V,Eα), the

function s′α : κα → κα defined by s′α(γ) = sα(γ)
+ represents λ+ in Ult(V,Eα).
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Hence ⟨Fγ ∈ [κ̄η, (λ
+)V )⟩ is a scale in

∏
α<η

sα(fα(κα))
+ when fα = fpα for some

p ∈ G with α ∈ supp(p). A similar argument explains a situation for limit β < η.
Thus we have the following.

Proposition 10.6. In V [G], for β ≤ η limit, ⟨F βγ : γ ∈ [κ̄β , (κ̄
+
β )
V [G])⟩ is a scale

in
∏
α<η

sα(fα(κα))
+. Every γ ∈ (κ̄β , (κ̄

+
β )
V [G])⟩ with β < cfV (γ) < κ̄β is very good.

As a consequence, the scale is very good.

Proof. We prove only the case β = η. Recall that (λ+)V = (κ̄+η )
V [G]. In V , let

γ ∈ [κ̄η, λ
+) with η < cfV [G](γ) < κ̄η. By Theorem 8.5, we have that cfV (γ) < κ̄η.

Assume cf(γ) < κα0
. Let C ⊆ γ \ κ̄η be a club of order-type cf(γ). Extend p to q

such that C ⊆ dqα0
, and for α ≥ α0 and µ ∈ Aqα, C ⊆ dom(µ). It is now easy to see

that q ⊩ ∀β0, β ∈ C(β0 < β1 =⇒ ∀α ≥ α0(Fβ0(α) < Fβ1(α))).
□

11. conclusion

We prove the following theorem:

Theorem 11.1. Assume GCH. Assume the result of Theorem 2.14, where the
length of the sequence of extenders is a regular cardinal η (including ω). Assume
that in the context of Theorem 2.14, |jEα

(λ)|V is regular for all α < η. There is a
λ++-c.c. forcing notion P = P⟨Eα:α<η⟩ such that

(1) P satisfies the Prikry property and the strong Prikry property.
(2) let G be P-generic. For limit α < η, let λα = sα(f

p
α(κα)) where jEα

(sα)(κα) =
λ. All cardinals in the intervals (κ̄α, λ

+
α ), for α < η limit, and (κ̄η, λ

+) are
collapsed. Other cardinals are preserved.

(3) If ⟨|jEα
(λ)|V : α < η⟩ is eventually constant, then 2κ̄η = supα<η |jEα

(λ)|,
otherwise 2κ̄η = (supα<η |jEα

(λ)|)+.
(4) Fix a limit ordinal β < η, p ∈ G and β ∈ supp(p). For α < β, let

λjα,β = tαβ(f
p
β(κβ)). Then if ⟨|λjα,β |V : α < β⟩ is eventually constant, then

2κ̄β = supα<β |λ
j
α,β |. Otherwise, 2κ̄β = (supα<β |λ

j
α,β |)+.

We point out an interesting phenomenon, thanks to a discussion with Gitik. If κ
is a singular cardinal in a ground model, then it is possible to preserve κ, collapse
κ+, and preserve all cardinals above κ+. Here is our explanation. When we set
λ = (supα<η κα)

+ in Theorem 11, then the only cardinal above supα<η κα which is

collapsed is (supα<η κα)
+. All the cardinals above are preserved in an extension.

Remark 11.2. (1) The assumption for Theorem 11.1 that |λjα|V is regular
can be relaxed. We actually just need cf(|λjα|V ) > λ+ to obtain the same
cardinal arithmetics. It is still possible to weaken the GCH assumption to
build the forcing, and the value of 2κ̄η will depend on the cardinal arithmetic
assumption assumed in the ground model.

(2) The functions uβα for β ≤ α are not necessary to define the forcing at
all, In fact, the functions sα, t

β
α, u

β
α defined at the beginning of Section

3 are not necessary. Here is the reason: for each α-object µ, we have
sα(µ(κα)) = µ(λ), tβα(µ(κα)) = µ(λjβ) and uβα(µ(κα)) = µ(λ̄jβ). Instead of
imposing the requirements for γ to be α-reflected in Definition 3.1, we can
add more corresponding requirements to µ being an α-object in Definition
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3.4, for example, since λ = jEα
(µ 7→ µ(λ))(mcα(dα)), we can say that every

α-object µ is such that µ(λ) is regular. However, definability of important
cardinals helps keeping track of the reflection phenomenon in a slightly
easier way.
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